{"title":"Bile Acids Modulate Hepatic Glycolipid Metabolism via the Microbiota-Gut-Liver Axis in Lambs.","authors":"Hailong Zhao, Daiwei Zhu, Yuyang Gao, Bing Wang","doi":"10.1016/j.tjnut.2025.05.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bile acids are essential molecules that facilitate lipid emulsification and function as signaling molecules mediating host-microbiota interactions. They shape the gut microbial structure and function, playing a critical role in metabolic regulation via the gut-liver axis.</p><p><strong>Objectives: </strong>This study aimed to investigate the effects of exogenous bile acids, primarily hyocholic acid (HCA), on the microbiota-gut-liver metabolism in male Tan-lambs fed a high-grain diet.</p><p><strong>Method: </strong>Thirty six-month-old male Tan lambs (Ovis aries) were randomly allocated into either a control (CON) group or an HCA-supplemented group (n = 15 per group). The trial lasted 84 days, including a 14-day adaptation period. On day 70, six lambs from each group were randomly selected for slaughter. Rumen and ileal contents were collected for microbial profiling via 16S rRNA sequencing, and liver tissue samples were harvested for transcriptomic and metabolomic analyses.</p><p><strong>Results: </strong>The HCA intervention significant altered the composition and structure of ruminal and ileal bacteria. Notable increases were observed in Turicibacter (linear discriminant analysis (LDA) score = 2.48; P < 0.05) and Muribaculaceae (LDA score = 3.75; P < 0.05) in the rumen, and Eubacterium fissicatena group (LDA score = 2.50; P < 0.05) in the ileum. Key hepatic genes and metabolites targeted by HCA were identified, including ENPP3, RFK, Ifi203, LIPG, CYP1A1, CYP4A11, nordeoxycholic acid (log-fold change = 6.30, P < 0.005), α-muricholic acid (log-fold change = 5.60, P < 0.001), β-muricholic acid (log-fold change = 5.60, P < 0.001).</p><p><strong>Conclusions: </strong>Exogenous bile acids regulate the microbiota-gut-liver axis, influencing hepatic glycolipid metabolism in sheep. Specifically, nordeoxycholic acid, demonstrates potential as a dietary intervention to promote metabolic homeostasis in ruminants. These findings highlight the potential of HCA and norDCA as functional feed additives or prebiotic agents for improving metabolic health in ruminants and potentially other species.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2025.05.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bile acids are essential molecules that facilitate lipid emulsification and function as signaling molecules mediating host-microbiota interactions. They shape the gut microbial structure and function, playing a critical role in metabolic regulation via the gut-liver axis.
Objectives: This study aimed to investigate the effects of exogenous bile acids, primarily hyocholic acid (HCA), on the microbiota-gut-liver metabolism in male Tan-lambs fed a high-grain diet.
Method: Thirty six-month-old male Tan lambs (Ovis aries) were randomly allocated into either a control (CON) group or an HCA-supplemented group (n = 15 per group). The trial lasted 84 days, including a 14-day adaptation period. On day 70, six lambs from each group were randomly selected for slaughter. Rumen and ileal contents were collected for microbial profiling via 16S rRNA sequencing, and liver tissue samples were harvested for transcriptomic and metabolomic analyses.
Results: The HCA intervention significant altered the composition and structure of ruminal and ileal bacteria. Notable increases were observed in Turicibacter (linear discriminant analysis (LDA) score = 2.48; P < 0.05) and Muribaculaceae (LDA score = 3.75; P < 0.05) in the rumen, and Eubacterium fissicatena group (LDA score = 2.50; P < 0.05) in the ileum. Key hepatic genes and metabolites targeted by HCA were identified, including ENPP3, RFK, Ifi203, LIPG, CYP1A1, CYP4A11, nordeoxycholic acid (log-fold change = 6.30, P < 0.005), α-muricholic acid (log-fold change = 5.60, P < 0.001), β-muricholic acid (log-fold change = 5.60, P < 0.001).
Conclusions: Exogenous bile acids regulate the microbiota-gut-liver axis, influencing hepatic glycolipid metabolism in sheep. Specifically, nordeoxycholic acid, demonstrates potential as a dietary intervention to promote metabolic homeostasis in ruminants. These findings highlight the potential of HCA and norDCA as functional feed additives or prebiotic agents for improving metabolic health in ruminants and potentially other species.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.