{"title":"Design, synthesis and biological evaluation of novel urolithin derivatives targeting liver cancer cells.","authors":"Mi Tian, Lirong Zhao, Yu Lan, Chen Li, Yipeng Ling, Benhong Zhou","doi":"10.1080/14756366.2025.2490707","DOIUrl":null,"url":null,"abstract":"<p><p>We designed and synthesised 22 new urolithin derivatives (UDs) based on methyl-urolithin A (mUA) to identify anti-cancer drugs with high efficacy and low toxicity and evaluated their anti-cancer activities <i>in vitro</i>. Cytotoxicity tests were performed on three cell lines (DU145, T24, and HepG2) and a human normal cell line (HK-2). The half-inhibitory concentration (IC<sub>50</sub>) of derivative UD-4c to hepatoma HepG2 cells (IC<sub>50</sub> = 4.66 ± 0.12 μM) was significantly lower than that of sorafenib (IC<sub>50</sub> =7.76 ± 0.12 μM), and exhibited less toxicity to HK-2 cells. Preliminary studies on the mechanism revealed that the derivative UD-4c could significantly inhibit the HepG2 cell growth and colony formation, block the HepG2 cell cycle in the G2/M phase, and induce apoptosis of HepG2 cells dose-dependently. The derivative UD-4c can be used as a potential lead compound to further develop new drugs for hepatocellular carcinoma treatment based on the evaluation of anti-cancer activity.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2490707"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2490707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We designed and synthesised 22 new urolithin derivatives (UDs) based on methyl-urolithin A (mUA) to identify anti-cancer drugs with high efficacy and low toxicity and evaluated their anti-cancer activities in vitro. Cytotoxicity tests were performed on three cell lines (DU145, T24, and HepG2) and a human normal cell line (HK-2). The half-inhibitory concentration (IC50) of derivative UD-4c to hepatoma HepG2 cells (IC50 = 4.66 ± 0.12 μM) was significantly lower than that of sorafenib (IC50 =7.76 ± 0.12 μM), and exhibited less toxicity to HK-2 cells. Preliminary studies on the mechanism revealed that the derivative UD-4c could significantly inhibit the HepG2 cell growth and colony formation, block the HepG2 cell cycle in the G2/M phase, and induce apoptosis of HepG2 cells dose-dependently. The derivative UD-4c can be used as a potential lead compound to further develop new drugs for hepatocellular carcinoma treatment based on the evaluation of anti-cancer activity.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.