Vidhya V Nair, Brianna R Kish, Hideyuki Oshima, Adam M Wright, Qiuting Wen, A J Schwichtenberg, Yunjie Tong
{"title":"Amplitude fluctuations of cerebrovascular oscillations and CSF movement desynchronize during NREM3 sleep.","authors":"Vidhya V Nair, Brianna R Kish, Hideyuki Oshima, Adam M Wright, Qiuting Wen, A J Schwichtenberg, Yunjie Tong","doi":"10.1177/0271678X251337637","DOIUrl":null,"url":null,"abstract":"<p><p>Fluctuations in cerebral blood volume (CBV) are a dominant mechanism aiding cerebrospinal fluid (CSF) movement in the brain during wakefulness and non-rapid eye movement (NREM) sleep. However, it is unclear if the amplitudes of CBV oscillations also change in proportion to the changes in amplitude of CSF movement across specific NREM sleep states. It is also not known if the coupling strength between them varies between NREM sleep states. To investigate these relationships, we measured cerebral hemodynamics and craniad CSF movement at the fourth ventricle simultaneously during wakefulness and NREM sleep states using concurrent Electroencephalography and functional Magnetic Resonance Imaging. We found that the amplitude fluctuations of cerebral hemodynamics and CSF oscillations desynchronize from one another only during deep NREM3 state, despite the strong mechanical coupling between CBV changes and CSF movement, which was consistent across all states. This suggests the existence of a different mechanism, linked to the cortical interstitial volume/resistance change, that regulates the NREM3 CSF inflow into the brain.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251337637"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081394/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251337637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Fluctuations in cerebral blood volume (CBV) are a dominant mechanism aiding cerebrospinal fluid (CSF) movement in the brain during wakefulness and non-rapid eye movement (NREM) sleep. However, it is unclear if the amplitudes of CBV oscillations also change in proportion to the changes in amplitude of CSF movement across specific NREM sleep states. It is also not known if the coupling strength between them varies between NREM sleep states. To investigate these relationships, we measured cerebral hemodynamics and craniad CSF movement at the fourth ventricle simultaneously during wakefulness and NREM sleep states using concurrent Electroencephalography and functional Magnetic Resonance Imaging. We found that the amplitude fluctuations of cerebral hemodynamics and CSF oscillations desynchronize from one another only during deep NREM3 state, despite the strong mechanical coupling between CBV changes and CSF movement, which was consistent across all states. This suggests the existence of a different mechanism, linked to the cortical interstitial volume/resistance change, that regulates the NREM3 CSF inflow into the brain.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.