Evolutionary and Structural Assessment of the Human Secreted Frizzled-Related Protein (SFRP) Family.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ladan Mafakher, Elham Rismani, Ladan Teimoori-Toolabi
{"title":"Evolutionary and Structural Assessment of the Human Secreted Frizzled-Related Protein (SFRP) Family.","authors":"Ladan Mafakher, Elham Rismani, Ladan Teimoori-Toolabi","doi":"10.1007/s00239-025-10249-5","DOIUrl":null,"url":null,"abstract":"<p><p>It has been observed that five members of Secreted Frizzled-Related proteins act as antagonists for the Wnt signaling pathway in humans. These glycoproteins have two functional domains: the cysteine-rich domain (CRD) and the netrin-related domain (NTR), with a completely conserved disulfide bond in the CRD domain. Phylogenetic analysis revealed that this protein family can be divided into two subgroups, SFRP1/SFRP2/SFRP5 versus SFRP3/SFRP4. The SFRP3/SFRP4 group was found to be more closely related to the sponge Lubomirskia baicalensis, which is believed to represent the ancient origin of SFRPs. The model evaluation demonstrated high-quality conformational homology modeling in the predicted Human SFRP models compared to the Sizzled crystal structure of Xenopus laevis. The molecular dynamic simulation illustrated that SFRP1 and SFRP2 exhibit the most stable structures during 100 ns of simulation. Multiple sequence alignment and conservation analysis of Human SFRPs showed that the CRD domain of SFRPs is more conserved than the NTR domain. The docking result indicated that SFRP3 has the highest binding affinity to Wnt3, while SFRP1 and SFRP5 have the lowest. Despite the lower affinity of SFRP1/SFRP5 for Wnt3, a higher positive charge in their NTR domains leads to an increase in their local concentration near the secreting cells and an enhancement in the antagonistic activity. In contrast, SFRP3/SFRP4 can act as an antagonist in distant cells due to less positive regions in their NTR domain and weakly binding to the heparin of the intercellular matrix.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10249-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It has been observed that five members of Secreted Frizzled-Related proteins act as antagonists for the Wnt signaling pathway in humans. These glycoproteins have two functional domains: the cysteine-rich domain (CRD) and the netrin-related domain (NTR), with a completely conserved disulfide bond in the CRD domain. Phylogenetic analysis revealed that this protein family can be divided into two subgroups, SFRP1/SFRP2/SFRP5 versus SFRP3/SFRP4. The SFRP3/SFRP4 group was found to be more closely related to the sponge Lubomirskia baicalensis, which is believed to represent the ancient origin of SFRPs. The model evaluation demonstrated high-quality conformational homology modeling in the predicted Human SFRP models compared to the Sizzled crystal structure of Xenopus laevis. The molecular dynamic simulation illustrated that SFRP1 and SFRP2 exhibit the most stable structures during 100 ns of simulation. Multiple sequence alignment and conservation analysis of Human SFRPs showed that the CRD domain of SFRPs is more conserved than the NTR domain. The docking result indicated that SFRP3 has the highest binding affinity to Wnt3, while SFRP1 and SFRP5 have the lowest. Despite the lower affinity of SFRP1/SFRP5 for Wnt3, a higher positive charge in their NTR domains leads to an increase in their local concentration near the secreting cells and an enhancement in the antagonistic activity. In contrast, SFRP3/SFRP4 can act as an antagonist in distant cells due to less positive regions in their NTR domain and weakly binding to the heparin of the intercellular matrix.

人类分泌卷曲相关蛋白(SFRP)家族的进化和结构评估。
已经观察到,分泌卷曲相关蛋白的五个成员在人类中作为Wnt信号通路的拮抗剂。这些糖蛋白有两个功能域:富含半胱氨酸的结构域(CRD)和网络蛋白相关结构域(NTR),在CRD结构域有一个完全保守的二硫键。系统发育分析表明,该蛋白家族可分为两个亚群,分别是SFRP1/SFRP2/SFRP5和SFRP3/SFRP4。研究发现,SFRP3/SFRP4类群与海绵Lubomirskia baicalensis亲缘关系更近,可能代表了SFRPs的古老起源。模型评价表明,与非洲爪蟾的晶体结构相比,预测的人类SFRP模型具有高质量的构象同源性。分子动力学模拟表明,在100 ns的模拟过程中,SFRP1和SFRP2的结构最稳定。对人类SFRPs的多序列比对和保守性分析表明,SFRPs的CRD结构域比NTR结构域更保守。对接结果表明,SFRP3与Wnt3的结合亲和力最高,而SFRP1和SFRP5的结合亲和力最低。尽管SFRP1/SFRP5对Wnt3的亲和力较低,但其NTR结构域的正电荷较高,导致其在分泌细胞附近的局部浓度增加,拮抗活性增强。相比之下,SFRP3/SFRP4由于其NTR结构域的阳性区域较少,与细胞间基质的肝素结合较弱,因此可以在远端细胞中作为拮抗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信