Analysis of floral biodiversity, survival, and growth rate in dump slope rehabilitation of an iron ore mine with jute geotextile.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Naresh K Katariya, B S Choudhary, Mahzad Esmaeili-Falak, A K Raina
{"title":"Analysis of floral biodiversity, survival, and growth rate in dump slope rehabilitation of an iron ore mine with jute geotextile.","authors":"Naresh K Katariya, B S Choudhary, Mahzad Esmaeili-Falak, A K Raina","doi":"10.1080/15226514.2025.2501426","DOIUrl":null,"url":null,"abstract":"<p><p>Mining reject dumps are prone to erosion and instability, creating a need for effective rehabilitation solutions. This study explores the application of jute geotextiles for slope stabilization and floral biodiversity restoration over a 12-year period at an iron ore mine in Maharashtra, India. Through selecting and applying biodegradable jute geotextiles on dump slopes, we assessed the growth and survival of 21 plant species, including Acacia auriculiformis, Casuarina equisetifolia, and various fruit-bearing trees. A total of 17 biodiversity indicators, such as species richness, Shannon diversity, Simpson dominance indices, etc, were used to evaluate ecological balance, revealing a moderate increase in biodiversity and ecosystem resilience over time. The study highlights the benefits of native species in enhancing soil quality and resilience. Key soil parameters, including pH, moisture, and organic carbon, were monitored to study their effects on geotextile biodegradation and plant growth. Our findings indicate that jute geotextiles offer a sustainable alternative to synthetic materials, degrading within 1-2 years while promoting vegetation, making them ideal for short to medium-term projects. Predictive models developed in this study provide valuable insights for future reclamation projects, reinforcing the environmental benefits of biodegradable materials in mine rehabilitation efforts.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-17"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2501426","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mining reject dumps are prone to erosion and instability, creating a need for effective rehabilitation solutions. This study explores the application of jute geotextiles for slope stabilization and floral biodiversity restoration over a 12-year period at an iron ore mine in Maharashtra, India. Through selecting and applying biodegradable jute geotextiles on dump slopes, we assessed the growth and survival of 21 plant species, including Acacia auriculiformis, Casuarina equisetifolia, and various fruit-bearing trees. A total of 17 biodiversity indicators, such as species richness, Shannon diversity, Simpson dominance indices, etc, were used to evaluate ecological balance, revealing a moderate increase in biodiversity and ecosystem resilience over time. The study highlights the benefits of native species in enhancing soil quality and resilience. Key soil parameters, including pH, moisture, and organic carbon, were monitored to study their effects on geotextile biodegradation and plant growth. Our findings indicate that jute geotextiles offer a sustainable alternative to synthetic materials, degrading within 1-2 years while promoting vegetation, making them ideal for short to medium-term projects. Predictive models developed in this study provide valuable insights for future reclamation projects, reinforcing the environmental benefits of biodegradable materials in mine rehabilitation efforts.

黄麻土工布修复某铁矿排土场边坡植物多样性、生存及生长速率分析。
采矿废料堆容易受到侵蚀和不稳定,因此需要有效的修复解决方案。本研究探讨了黄麻土工布在印度马哈拉施特拉邦一个铁矿边坡稳定和植物生物多样性恢复中的应用。通过选择可降解黄麻土工布在排土场边坡上的应用,对金合槐、木麻黄和各种果树等21种植物的生长和存活进行了评价。利用物种丰富度、Shannon多样性、Simpson优势度等17个生物多样性指标对生态平衡进行评价,结果表明随着时间的推移,生物多样性和生态系统恢复力呈适度增长趋势。该研究强调了本地物种在提高土壤质量和恢复力方面的好处。研究了pH、水分、有机碳等关键土壤参数对土工布生物降解和植物生长的影响。我们的研究结果表明,黄麻土工布是合成材料的可持续替代品,在1-2年内降解,同时促进植被,使其成为中短期项目的理想选择。本研究中建立的预测模型为未来的复垦项目提供了有价值的见解,加强了生物可降解材料在矿山复垦工作中的环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信