{"title":"Immune checkpoint inhibitors and immunosuppressive tumor microenvironment: current challenges and strategies to overcome resistance.","authors":"Gurpreet Singh Gill, Simmi Kharb, Gitanjali Goyal, Prasenjit Das, Kailash Chand Kurdia, Ruby Dhar, Subhradip Karmakar","doi":"10.1080/08923973.2025.2504906","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Immune checkpoint inhibitors (ICIs) are shown to improve cancer treatment effectiveness by boosting the immune system of the patient. Nevertheless, the unique and highly suppressive TME poses a significant challenge, causing heterogeneity of response or resistance in a considerable number of patients. This review aims to explore the challenges posed by the immunosuppressive tumor microenvironment (TME) in response to immune checkpoint inhibitors (ICIs) and discusses potential strategies to overcome resistance.</p><p><strong>Material & methods: </strong>A comprehensive review of existing literature was conducted to analyze the immunosuppressive features of the TME, including the role of immunosuppressive cells, cytokine and chemokine signaling, metabolic alterations, and overexpression of immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, BTLA). Additionally, strategies to overcome resistance-such as targeting immunosuppressive cells, normalizing tumor vasculature, dual or triple checkpoint blockade, and combining ICIs with vaccines, oncolytic viruses, and metabolic inhibitors-are elaborated. The need for predictive biomarkers to stratify patients and assess treatment response was also discussed.</p><p><strong>Results: </strong>The review highlights that the immunosuppressive TME contributes significantly to resistance against ICIs, mediated through various mechanisms. Potential strategies to overcome resistance include modulating the TME by targeting immunosuppressive components, combination therapies, and the identification of predictive biomarkers. Further research and innovative approaches are required to fully understand TME-ICI interactions and change the face of cancer treatment.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-23"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2025.2504906","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Immune checkpoint inhibitors (ICIs) are shown to improve cancer treatment effectiveness by boosting the immune system of the patient. Nevertheless, the unique and highly suppressive TME poses a significant challenge, causing heterogeneity of response or resistance in a considerable number of patients. This review aims to explore the challenges posed by the immunosuppressive tumor microenvironment (TME) in response to immune checkpoint inhibitors (ICIs) and discusses potential strategies to overcome resistance.
Material & methods: A comprehensive review of existing literature was conducted to analyze the immunosuppressive features of the TME, including the role of immunosuppressive cells, cytokine and chemokine signaling, metabolic alterations, and overexpression of immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIM-3, TIGIT, BTLA). Additionally, strategies to overcome resistance-such as targeting immunosuppressive cells, normalizing tumor vasculature, dual or triple checkpoint blockade, and combining ICIs with vaccines, oncolytic viruses, and metabolic inhibitors-are elaborated. The need for predictive biomarkers to stratify patients and assess treatment response was also discussed.
Results: The review highlights that the immunosuppressive TME contributes significantly to resistance against ICIs, mediated through various mechanisms. Potential strategies to overcome resistance include modulating the TME by targeting immunosuppressive components, combination therapies, and the identification of predictive biomarkers. Further research and innovative approaches are required to fully understand TME-ICI interactions and change the face of cancer treatment.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).