Evaluating Adherence to Safety Standards for Physical Space Design, Equipment, and Patient and Staff Protection in Magnetic Resonance Imaging Centers: A Descriptive Cross-sectional Study.
{"title":"Evaluating Adherence to Safety Standards for Physical Space Design, Equipment, and Patient and Staff Protection in Magnetic Resonance Imaging Centers: A Descriptive Cross-sectional Study.","authors":"Amirreza Sadeghinasab, Jafar Fatahiasl, Mahmoud Mohammadi-Sadr, Masoud Heydari Kahkesh, Marziyeh Tahmasbi","doi":"10.1097/HP.0000000000001991","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Magnetic resonance imaging (MRI) has revolutionized disease diagnosis and treatment. However, the technology poses safety risks, such as exposure to magnetic fields, RF pulses, and cryogens, necessitating strict adherence to safety protocols to protect patients and healthcare workers. This cross-sectional descriptive study assessed compliance with MRI safety standards in Khuzestan province, Iran) imaging centers, focusing on electromagnetic fields and other key safety domains. A 61-item researcher-developed checklist, based on international safety guidelines, was used to evaluate safety protocols in 11 MRI centers across seven domains, including facility design, equipment labeling, static magnetic and gradient fields, RF waves, cryogens, patient and staff protection, and infection control. MRI staff responded with yes/no answers. Responses to three additional questions also were collected. Data analysis was conducted using SPSS 26. A p-value < 0.05 was considered statistically significant. Overall, facility design scores ranged from 54.5% to 100%, but static magnetic field safety ratings were significantly lower (25% to 100%). Although safety equipment availability reached 100% in some centers, gaps were noted in labeling ferromagnetic devices. Infection control adherence was high, but only seven centers featured seamless flooring in the magnet room. Cryogen safety showed partial compliance with some centers lacking exhaust fans. Employee and patient safety measures were inconsistent, with one center scoring as low as 18%. While MRI centers demonstrated strengths in infection control and facility design, critical deficiencies in static magnetic field safety and emergency protocols highlight the need for targeted training, regular audits, and updated policies. Addressing these gaps is essential to enhancing MRI safety practices and aligning with international standards.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001991","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Magnetic resonance imaging (MRI) has revolutionized disease diagnosis and treatment. However, the technology poses safety risks, such as exposure to magnetic fields, RF pulses, and cryogens, necessitating strict adherence to safety protocols to protect patients and healthcare workers. This cross-sectional descriptive study assessed compliance with MRI safety standards in Khuzestan province, Iran) imaging centers, focusing on electromagnetic fields and other key safety domains. A 61-item researcher-developed checklist, based on international safety guidelines, was used to evaluate safety protocols in 11 MRI centers across seven domains, including facility design, equipment labeling, static magnetic and gradient fields, RF waves, cryogens, patient and staff protection, and infection control. MRI staff responded with yes/no answers. Responses to three additional questions also were collected. Data analysis was conducted using SPSS 26. A p-value < 0.05 was considered statistically significant. Overall, facility design scores ranged from 54.5% to 100%, but static magnetic field safety ratings were significantly lower (25% to 100%). Although safety equipment availability reached 100% in some centers, gaps were noted in labeling ferromagnetic devices. Infection control adherence was high, but only seven centers featured seamless flooring in the magnet room. Cryogen safety showed partial compliance with some centers lacking exhaust fans. Employee and patient safety measures were inconsistent, with one center scoring as low as 18%. While MRI centers demonstrated strengths in infection control and facility design, critical deficiencies in static magnetic field safety and emergency protocols highlight the need for targeted training, regular audits, and updated policies. Addressing these gaps is essential to enhancing MRI safety practices and aligning with international standards.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.