{"title":"WDR62 affects the progression of ovarian cancer by regulating the cell cycle.","authors":"Yuqi Yang, Wanting Jing, Lingqi Zhang, Yuhang Zhang, Ying Shang, Ye Kuang","doi":"10.1186/s41065-025-00444-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian Cancer (OC) is a gynecological malignant tumor with an extremely high mortality rate, seriously endangering women's health. Due to its insidious clinical manifestations, most patients are diagnosed in the advanced stage of the disease. The currently clinically relied CA125 has limited specificity for the early diagnosis of ovarian cancer. Hence, identifying new promising biomarkers is crucial for the early screening, diagnosis, and treatment of ovarian cancer. Based on differential expression analysis, WGCNA and survival analysis, we identified a centromere-associated gene, WDR62, which is highly expressed in ovarian cancer and highly correlated with ovarian cancer, as well as the poor prognosis of ovarian cancer patients with high expression, suggesting that WDR62 may be a potential biomarker for ovarian cancer. Previous studies have shown that WDR62 is closely associated with the occurrence, development and prognosis of a variety of tumors. However, its role in ovarian cancer has not been studied in depth.</p><p><strong>Methods: </strong>Using combined TCGA and GTEx datasets from the UCSC database, along with WGCNA, and survival analysis, WDR62 was identified as a potential biomarker. GEPIA2 database, GEO database, qRT-PCR, and Western blot proved the expression of WDR62. Enrichment analysis, cell transfection, Western blots and CCK8 demonstrated the regulatory mechanism of WDR62, and the detailed mechanism of WDR62 involvement in the occurrence and development of ovarian cancer was predicted by interaction analysis and correlation analysis.</p><p><strong>Results: </strong>WDR62 was highly expressed in ovarian cancer cells compared to normal ovarian epithelial cells, both at the RNA and protein levels. Patients with high WDR62 expression had a poor survival prognosis. Upon WDR62 knockdown, the expression of cell cycle-related proteins CDK1 and C-Myc decreased in ovarian cancer cells, and the cell proliferative capacity was decreased. Based on bioinformatic analysis, it was hypothesized that WDR62 might mediate the JNK signaling pathway by interacting with MAPK8, thus affecting ovarian cancer progression through cell cycle regulation.</p><p><strong>Conclusions: </strong>WDR62 is overexpressed in ovarian cancer and is closely related to the prognosis of ovarian cancer patients. WDR62 promotes ovarian cancer progression by regulating the cell cycle and may influence its development through interaction with MAPK8 to mediate the JNK signaling pathway. These findings suggest that WDR62 could be a potential target for the early screening, diagnosis, and treatment of ovarian cancer.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"78"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00444-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ovarian Cancer (OC) is a gynecological malignant tumor with an extremely high mortality rate, seriously endangering women's health. Due to its insidious clinical manifestations, most patients are diagnosed in the advanced stage of the disease. The currently clinically relied CA125 has limited specificity for the early diagnosis of ovarian cancer. Hence, identifying new promising biomarkers is crucial for the early screening, diagnosis, and treatment of ovarian cancer. Based on differential expression analysis, WGCNA and survival analysis, we identified a centromere-associated gene, WDR62, which is highly expressed in ovarian cancer and highly correlated with ovarian cancer, as well as the poor prognosis of ovarian cancer patients with high expression, suggesting that WDR62 may be a potential biomarker for ovarian cancer. Previous studies have shown that WDR62 is closely associated with the occurrence, development and prognosis of a variety of tumors. However, its role in ovarian cancer has not been studied in depth.
Methods: Using combined TCGA and GTEx datasets from the UCSC database, along with WGCNA, and survival analysis, WDR62 was identified as a potential biomarker. GEPIA2 database, GEO database, qRT-PCR, and Western blot proved the expression of WDR62. Enrichment analysis, cell transfection, Western blots and CCK8 demonstrated the regulatory mechanism of WDR62, and the detailed mechanism of WDR62 involvement in the occurrence and development of ovarian cancer was predicted by interaction analysis and correlation analysis.
Results: WDR62 was highly expressed in ovarian cancer cells compared to normal ovarian epithelial cells, both at the RNA and protein levels. Patients with high WDR62 expression had a poor survival prognosis. Upon WDR62 knockdown, the expression of cell cycle-related proteins CDK1 and C-Myc decreased in ovarian cancer cells, and the cell proliferative capacity was decreased. Based on bioinformatic analysis, it was hypothesized that WDR62 might mediate the JNK signaling pathway by interacting with MAPK8, thus affecting ovarian cancer progression through cell cycle regulation.
Conclusions: WDR62 is overexpressed in ovarian cancer and is closely related to the prognosis of ovarian cancer patients. WDR62 promotes ovarian cancer progression by regulating the cell cycle and may influence its development through interaction with MAPK8 to mediate the JNK signaling pathway. These findings suggest that WDR62 could be a potential target for the early screening, diagnosis, and treatment of ovarian cancer.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.