Jikai Li, Lu Chai, Mei Yang, Hailing Zhang, Chen Shang, Yuxuan Liu, Kailin Qian, Jiuding Sun, Weibo Han, Pan Zhang
{"title":"<i>MsLHY</i> is an active regulator of cold resistance in alfalfa (<i>Medicago sativa</i> L.).","authors":"Jikai Li, Lu Chai, Mei Yang, Hailing Zhang, Chen Shang, Yuxuan Liu, Kailin Qian, Jiuding Sun, Weibo Han, Pan Zhang","doi":"10.3389/fpls.2025.1559988","DOIUrl":null,"url":null,"abstract":"<p><p>Low-temperature stress is a major environmental factor that limits the yield, quality, and geographical distribution of forage crops and restricts the development of the forage industry. As a core component of plant circadian clocks, Late Elongated Hypocotyl (LHY) plays a crucial role in regulating plant rhythms and responses to abiotic stress. However, the molecular mechanism by which <i>LHY</i> regulates the cold tolerance of alfalfa has not been reported. In this study, <i>MsLHY</i>, which is 2,235 bp in length and encodes 744 amino acids, was isolated from alfalfa. <i>MsLHY</i> was highly expressed in roots and stems and was significantly induced by low temperature. Transgenic <i>MsLHY</i>-overexpressing (OE) and RNAi alfalfa plants were obtained via <i>Agrobacterium</i>-mediated transformation. Under low-temperature stress, OE plants presented reduced reactive oxygen species accumulation and more osmotic regulatory substances, as well as greater antioxidant enzyme activity, to combat cold stress. Conversely, the RNAi plants presented trends opposite those of the OE plants. Furthermore, under cold stress, the overexpression of <i>MsLHY</i> upregulated the expression of the cold-responsive genes <i>MsICE1</i>, <i>MsCBF1</i>, <i>MsCOR15A</i>, and <i>MsCML10</i>, as well as the expression of the antioxidant-synthesizing genes <i>MsSOD1</i> and <i>MsCAT1</i>, thereby increasing the cold tolerance of transgenic alfalfa. These results suggest that <i>MsLHY</i> plays an important role in increasing the cold tolerance of alfalfa.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1559988"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1559988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low-temperature stress is a major environmental factor that limits the yield, quality, and geographical distribution of forage crops and restricts the development of the forage industry. As a core component of plant circadian clocks, Late Elongated Hypocotyl (LHY) plays a crucial role in regulating plant rhythms and responses to abiotic stress. However, the molecular mechanism by which LHY regulates the cold tolerance of alfalfa has not been reported. In this study, MsLHY, which is 2,235 bp in length and encodes 744 amino acids, was isolated from alfalfa. MsLHY was highly expressed in roots and stems and was significantly induced by low temperature. Transgenic MsLHY-overexpressing (OE) and RNAi alfalfa plants were obtained via Agrobacterium-mediated transformation. Under low-temperature stress, OE plants presented reduced reactive oxygen species accumulation and more osmotic regulatory substances, as well as greater antioxidant enzyme activity, to combat cold stress. Conversely, the RNAi plants presented trends opposite those of the OE plants. Furthermore, under cold stress, the overexpression of MsLHY upregulated the expression of the cold-responsive genes MsICE1, MsCBF1, MsCOR15A, and MsCML10, as well as the expression of the antioxidant-synthesizing genes MsSOD1 and MsCAT1, thereby increasing the cold tolerance of transgenic alfalfa. These results suggest that MsLHY plays an important role in increasing the cold tolerance of alfalfa.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.