FOCUS: object-centric world models for robotic manipulation.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1585386
Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt
{"title":"FOCUS: object-centric world models for robotic manipulation.","authors":"Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt","doi":"10.3389/fnbot.2025.1585386","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the world in terms of objects and the possible interactions with them is an important cognitive ability. However, current world models adopted in reinforcement learning typically lack this structure and represent the world state in a global latent vector. To address this, we propose FOCUS, a model-based agent that learns an object-centric world model. This novel representation also enables the design of an object-centric exploration mechanism, which encourages the agent to interact with objects and discover useful interactions. We benchmark FOCUS in several robotic manipulation settings, where we found that our method can be used to improve manipulation skills. The object-centric world model leads to more accurate predictions of the objects in the scene and it enables more efficient learning. The object-centric exploration strategy fosters interactions with the objects in the environment, such as reaching, moving, and rotating them, and it allows fast adaptation of the agent to sparse reward reinforcement learning tasks. Using a Franka Emika robot arm, we also showcase how FOCUS proves useful in real-world applications. Website: focus-manipulation.github.io.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1585386"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1585386","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the world in terms of objects and the possible interactions with them is an important cognitive ability. However, current world models adopted in reinforcement learning typically lack this structure and represent the world state in a global latent vector. To address this, we propose FOCUS, a model-based agent that learns an object-centric world model. This novel representation also enables the design of an object-centric exploration mechanism, which encourages the agent to interact with objects and discover useful interactions. We benchmark FOCUS in several robotic manipulation settings, where we found that our method can be used to improve manipulation skills. The object-centric world model leads to more accurate predictions of the objects in the scene and it enables more efficient learning. The object-centric exploration strategy fosters interactions with the objects in the environment, such as reaching, moving, and rotating them, and it allows fast adaptation of the agent to sparse reward reinforcement learning tasks. Using a Franka Emika robot arm, we also showcase how FOCUS proves useful in real-world applications. Website: focus-manipulation.github.io.

焦点:机器人操作的以对象为中心的世界模型。
从物体及其可能的相互作用的角度来理解世界是一种重要的认知能力。然而,目前强化学习中采用的世界模型通常缺乏这种结构,而是用全局潜在向量表示世界状态。为了解决这个问题,我们提出FOCUS,一个基于模型的智能体,它学习一个以对象为中心的世界模型。这种新颖的表示还支持以对象为中心的探索机制的设计,该机制鼓励代理与对象进行交互并发现有用的交互。我们在几个机器人操作设置中对FOCUS进行了基准测试,发现我们的方法可以用来提高操作技能。以对象为中心的世界模型可以更准确地预测场景中的对象,并实现更有效的学习。以对象为中心的探索策略促进了与环境中对象的交互,例如到达,移动和旋转它们,并且它允许代理快速适应稀疏奖励强化学习任务。通过使用Franka Emika机械臂,我们还展示了FOCUS在实际应用中的实用性。网站:focus-manipulation.github.io。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信