{"title":"Deep learning-based detection of bacterial swarm motion using a single image.","authors":"Yuzhu Li, Hao Li, Weijie Chen, Keelan O'Riordan, Neha Mani, Yuxuan Qi, Tairan Liu, Sridhar Mani, Aydogan Ozcan","doi":"10.1080/19490976.2025.2505115","DOIUrl":null,"url":null,"abstract":"<p><p>Motility is a fundamental characteristic of bacteria. Distinguishing between swarming and swimming, the two principal forms of bacterial movement, holds significant conceptual and clinical relevance. Conventionally, the detection of bacterial swarming involves inoculating samples on an agar surface and observing colony expansion, which is qualitative, time-intensive, and requires additional testing to rule out other motility forms. A recent methodology that differentiates swarming and swimming motility in bacteria using circular confinement offers a rapid approach to detecting swarming. However, it still heavily depends on the observer's expertise, making the process labor-intensive, costly, slow, and susceptible to inevitable human bias. To address these limitations, we developed a deep learning-based swarming classifier that rapidly and autonomously predicts swarming probability using a single blurry image. Compared with traditional video-based, manually processed approaches, our method is particularly suited for high-throughput environments and provides objective, quantitative assessments of swarming probability. The swarming classifier demonstrated in our work was trained on <i>Enterobacter sp</i>. SM3 and showed good performance when blindly tested on new swarming (positive) and swimming (negative) test images of SM3, achieving a sensitivity of 97.44% and a specificity of 100%. Furthermore, this classifier demonstrated robust external generalization capabilities when applied to unseen bacterial species, such as <i>Serratia marcescens</i> DB10 and <i>Citrobacter koseri</i> H6. This competitive performance indicates the potential to adapt our approach for diagnostic applications through portable devices, which would facilitate rapid, objective, on-site screening for bacterial swarming motility, potentially enhancing the early detection and treatment assessment of various diseases, including inflammatory bowel diseases (IBD) and urinary tract infections (UTI).</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2505115"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2505115","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motility is a fundamental characteristic of bacteria. Distinguishing between swarming and swimming, the two principal forms of bacterial movement, holds significant conceptual and clinical relevance. Conventionally, the detection of bacterial swarming involves inoculating samples on an agar surface and observing colony expansion, which is qualitative, time-intensive, and requires additional testing to rule out other motility forms. A recent methodology that differentiates swarming and swimming motility in bacteria using circular confinement offers a rapid approach to detecting swarming. However, it still heavily depends on the observer's expertise, making the process labor-intensive, costly, slow, and susceptible to inevitable human bias. To address these limitations, we developed a deep learning-based swarming classifier that rapidly and autonomously predicts swarming probability using a single blurry image. Compared with traditional video-based, manually processed approaches, our method is particularly suited for high-throughput environments and provides objective, quantitative assessments of swarming probability. The swarming classifier demonstrated in our work was trained on Enterobacter sp. SM3 and showed good performance when blindly tested on new swarming (positive) and swimming (negative) test images of SM3, achieving a sensitivity of 97.44% and a specificity of 100%. Furthermore, this classifier demonstrated robust external generalization capabilities when applied to unseen bacterial species, such as Serratia marcescens DB10 and Citrobacter koseri H6. This competitive performance indicates the potential to adapt our approach for diagnostic applications through portable devices, which would facilitate rapid, objective, on-site screening for bacterial swarming motility, potentially enhancing the early detection and treatment assessment of various diseases, including inflammatory bowel diseases (IBD) and urinary tract infections (UTI).
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.