Sirilak Radbouchoom, Marjorie D Delos Angeles, Boniface K Ngarega, Thamarat Phutthai, Harald Schneider
{"title":"Forecasting habitat suitability of tropical karst plants in a warmer world - Thailand's <i>Begonia</i> diversity as a key example.","authors":"Sirilak Radbouchoom, Marjorie D Delos Angeles, Boniface K Ngarega, Thamarat Phutthai, Harald Schneider","doi":"10.3389/fpls.2025.1496040","DOIUrl":null,"url":null,"abstract":"<p><p>Tropical karst habitats host a rich plant diversity, of which many species are edaphic specialists with narrow distribution ranges. Many of these plants are expected to be highly vulnerable to global climate change as a consequence of the substantial fragmentation of karst formations in combination with edaphic preferences and dispersal limitations. In recent years, the application of species distribution models to predict range under future climate scenarios has increasingly become a popular tool to guide conservation management approaches. Here, we examined the impact of climate change on the genus <i>Begonia</i> in Thailand using an ensemble modelling approach. The models incorporated climatic data and the geological characteristics of karst formations to reliably predict the distribution of species that reside within karst habitats. Our results revealed that the diversity of <i>Begonia</i> species in karst environments is primarily influenced by key climatic factors, including the mean temperature of the wettest quarter and annual precipitation, along with geographical features such as karst formations. Together, these elements significantly shape the distribution patterns of <i>Begonia</i> diversity in these unique habitats. Under current climatic conditions, clusters of suitable habitats for <i>Begonia</i> were found in Northern, South-Western, and Southern Thailand. The employed scenarios for future warmer climates converged to predict a substantial loss of currently suitable habitats. Applying the moderate SSP245 scenario, the model predicted range losses of 32.46% in 2050 that accumulate to 38.55% in 2070. Notably, more worrying predictions were obtained by applying the worst-case (SSP585) scenario, which projected a range loss of 37.73% in 2050 and increasing to 62.81% in 2070. In turn, the gain by areas becoming suitable was much lower than the loss. These results are highly consistent with the predicted high vulnerability of karst plants to global climatic change. Conservation efforts require taking into account these predictions by focusing on two key actions. Firstly, protecting areas where occurrences of <i>Begonia</i> are predicted to be less affected by climate change. The assignment of these areas to national parks thus far has not been achieved yet. Secondly, establishing practical conservation strategies for <i>Begonia</i> species occurring preliminary or even exclusively in karst landscapes.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1496040"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1496040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical karst habitats host a rich plant diversity, of which many species are edaphic specialists with narrow distribution ranges. Many of these plants are expected to be highly vulnerable to global climate change as a consequence of the substantial fragmentation of karst formations in combination with edaphic preferences and dispersal limitations. In recent years, the application of species distribution models to predict range under future climate scenarios has increasingly become a popular tool to guide conservation management approaches. Here, we examined the impact of climate change on the genus Begonia in Thailand using an ensemble modelling approach. The models incorporated climatic data and the geological characteristics of karst formations to reliably predict the distribution of species that reside within karst habitats. Our results revealed that the diversity of Begonia species in karst environments is primarily influenced by key climatic factors, including the mean temperature of the wettest quarter and annual precipitation, along with geographical features such as karst formations. Together, these elements significantly shape the distribution patterns of Begonia diversity in these unique habitats. Under current climatic conditions, clusters of suitable habitats for Begonia were found in Northern, South-Western, and Southern Thailand. The employed scenarios for future warmer climates converged to predict a substantial loss of currently suitable habitats. Applying the moderate SSP245 scenario, the model predicted range losses of 32.46% in 2050 that accumulate to 38.55% in 2070. Notably, more worrying predictions were obtained by applying the worst-case (SSP585) scenario, which projected a range loss of 37.73% in 2050 and increasing to 62.81% in 2070. In turn, the gain by areas becoming suitable was much lower than the loss. These results are highly consistent with the predicted high vulnerability of karst plants to global climatic change. Conservation efforts require taking into account these predictions by focusing on two key actions. Firstly, protecting areas where occurrences of Begonia are predicted to be less affected by climate change. The assignment of these areas to national parks thus far has not been achieved yet. Secondly, establishing practical conservation strategies for Begonia species occurring preliminary or even exclusively in karst landscapes.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.