{"title":"Implications of mechanosensitive ion channels in the pathogenesis of osteoarthritis: a comprehensive review.","authors":"Yuelong Zhang, Huangming Zhuang, Xunshan Ren, Panghu Zhou","doi":"10.3389/fcell.2025.1549812","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is the predominant cause of joint pain and limited mobility in older people, and its prevalence is increasing as the population ages. Given the lack of effective therapeutic interventions, the disability rate associated with OA is a staggering 53%, which significantly affects the wellbeing of those affected and represents a significant social and family financial burden. Consequently, OA has emerged as a pressing social and public health concern globally. Various forms of mechanical strain, such as dynamic compression, fluid shear, tissue shear, and hydrostatic pressure, serve as crucial physical stimuli perceived by chondrocytes. Recent studies indicate that aberrant mechanical loading represents a fundamental risk factor for OA. Upon exposure to mechanical loading, chondrocytes translate mechanical cues into chemical signals primarily via mechanosensitive ion channels, resulting in alterations in cartilage metabolism. Numerous studies have demonstrated the significance of mechanosensitive ion channels in the pathogenesis of OA, suggesting that therapeutic interventions targeting these channels on chondrocytes may offer potential benefits.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1549812"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1549812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is the predominant cause of joint pain and limited mobility in older people, and its prevalence is increasing as the population ages. Given the lack of effective therapeutic interventions, the disability rate associated with OA is a staggering 53%, which significantly affects the wellbeing of those affected and represents a significant social and family financial burden. Consequently, OA has emerged as a pressing social and public health concern globally. Various forms of mechanical strain, such as dynamic compression, fluid shear, tissue shear, and hydrostatic pressure, serve as crucial physical stimuli perceived by chondrocytes. Recent studies indicate that aberrant mechanical loading represents a fundamental risk factor for OA. Upon exposure to mechanical loading, chondrocytes translate mechanical cues into chemical signals primarily via mechanosensitive ion channels, resulting in alterations in cartilage metabolism. Numerous studies have demonstrated the significance of mechanosensitive ion channels in the pathogenesis of OA, suggesting that therapeutic interventions targeting these channels on chondrocytes may offer potential benefits.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.