Mosleh Hmoud Al-Adhaileh, Asim Wadood, Theyazn H H Aldhyani, Safeer Khan, M Irfan Uddin, Abdullah H Al-Nefaie
{"title":"Deep learning techniques for detecting freezing of gait episodes in Parkinson's disease using wearable sensors.","authors":"Mosleh Hmoud Al-Adhaileh, Asim Wadood, Theyazn H H Aldhyani, Safeer Khan, M Irfan Uddin, Abdullah H Al-Nefaie","doi":"10.3389/fphys.2025.1581699","DOIUrl":null,"url":null,"abstract":"<p><p>Freezing of Gait (FoG) is a disabling motor symptom that characterizes Parkinson's Disease (PD) patients and significantly affects their mobility and quality of life. The paper presents a novel hybrid deep learning framework for the detection of FoG episodes using wearable sensors. The methodology combines CNNs for spatial feature extraction, BiLSTM networks for temporal modeling, and an attention mechanism to enhance interpretability and focus on critical gait features. The approach leverages multimodal datasets, including tDCS FOG, DeFOG, Daily Living, and Hantao's Multimodal, to ensure robustness and generalizability. The proposed model deals with sensor noise, inter-subject variability, and data imbalance through comprehensive preprocessing techniques such as sensor fusion, normalization, and data augmentation. The proposed model achieved an average accuracy of 92.5%, F1-score of 89.3%, and AUC of 0.91, outperforming state-of-the-art methods. Post-training quantization and pruning enabled deployment on edge devices such as Raspberry Pi and Coral TPU, achieving inference latency under 350 ms. Ablation studies show the critical contribution of key architectural components to the model's effectiveness. Optimized to be deployed real-time, it is a potentially promising solution that can help correctly detect FoG, thereby achieving better clinical monitoring and improving patients' outcomes in a controlled as well as real world.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1581699"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1581699","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Freezing of Gait (FoG) is a disabling motor symptom that characterizes Parkinson's Disease (PD) patients and significantly affects their mobility and quality of life. The paper presents a novel hybrid deep learning framework for the detection of FoG episodes using wearable sensors. The methodology combines CNNs for spatial feature extraction, BiLSTM networks for temporal modeling, and an attention mechanism to enhance interpretability and focus on critical gait features. The approach leverages multimodal datasets, including tDCS FOG, DeFOG, Daily Living, and Hantao's Multimodal, to ensure robustness and generalizability. The proposed model deals with sensor noise, inter-subject variability, and data imbalance through comprehensive preprocessing techniques such as sensor fusion, normalization, and data augmentation. The proposed model achieved an average accuracy of 92.5%, F1-score of 89.3%, and AUC of 0.91, outperforming state-of-the-art methods. Post-training quantization and pruning enabled deployment on edge devices such as Raspberry Pi and Coral TPU, achieving inference latency under 350 ms. Ablation studies show the critical contribution of key architectural components to the model's effectiveness. Optimized to be deployed real-time, it is a potentially promising solution that can help correctly detect FoG, thereby achieving better clinical monitoring and improving patients' outcomes in a controlled as well as real world.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.