{"title":"The carboxylate \"gripper\" of the substrate is critical for C-4 stereo-inversion by UDP-glucuronic acid 4-epimerase.","authors":"Annika J E Borg, Laura De Cnop, Bernd Nidetzky","doi":"10.1002/1873-3468.70070","DOIUrl":null,"url":null,"abstract":"<p><p>UDP-glucuronic acid 4-epimerase (UGAepi) catalyzes the NAD<sup>+</sup>-dependent interconversion of UDP-glucuronic acid (UDP-GlcA) and UDP-galacturonic acid (UDP-GalA) through a mechanism involving C4-oxidation, 4-keto-intermediate rotation, and subsequent reduction. Here, the functional significance of the substrate's carboxylate group in the epimerization process was investigated using UDP-4-keto-pentose, an analogous intermediate that lacks a carboxylate moiety. Site-directed mutations were introduced into UGAepi from Bacillus cereus (BcUGAepi) to increase substrate binding pocket flexibility, enabling the variant enzymes to accommodate UDP-4-keto-pentose more efficiently than the wild-type does. Although these BcUGAepi variants partially maintained nonstereospecific C4-epimerization activity with UDP-GlcA, they demonstrated fully stereospecific reduction of UDP-4-keto-pentose to UDP-xylose. These findings highlight the critical role of the carboxylate moiety as an essential element for epimerization in BcUGAepi, and elucidate the structural determinants of substrate specificity in UGAepis.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
UDP-glucuronic acid 4-epimerase (UGAepi) catalyzes the NAD+-dependent interconversion of UDP-glucuronic acid (UDP-GlcA) and UDP-galacturonic acid (UDP-GalA) through a mechanism involving C4-oxidation, 4-keto-intermediate rotation, and subsequent reduction. Here, the functional significance of the substrate's carboxylate group in the epimerization process was investigated using UDP-4-keto-pentose, an analogous intermediate that lacks a carboxylate moiety. Site-directed mutations were introduced into UGAepi from Bacillus cereus (BcUGAepi) to increase substrate binding pocket flexibility, enabling the variant enzymes to accommodate UDP-4-keto-pentose more efficiently than the wild-type does. Although these BcUGAepi variants partially maintained nonstereospecific C4-epimerization activity with UDP-GlcA, they demonstrated fully stereospecific reduction of UDP-4-keto-pentose to UDP-xylose. These findings highlight the critical role of the carboxylate moiety as an essential element for epimerization in BcUGAepi, and elucidate the structural determinants of substrate specificity in UGAepis.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.