Synergy of dissolving microneedles and ultrasound to enhance transdermal delivery for rheumatoid arthritis.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Wangrui Peng, MeeiChyn Goh, Jie Lan, Meng Du, Zhiyi Chen
{"title":"Synergy of dissolving microneedles and ultrasound to enhance transdermal delivery for rheumatoid arthritis.","authors":"Wangrui Peng, MeeiChyn Goh, Jie Lan, Meng Du, Zhiyi Chen","doi":"10.1007/s13346-025-01876-y","DOIUrl":null,"url":null,"abstract":"<p><p>Dissolving microneedles (DMNs) are an emerging transdermal drug delivery system that has gained increasing attention as an alternative to traditional oral and injectable methods for treating rheumatoid arthritis (RA). However, these DMNs encounter challenges related to insufficient drug diffusion through passive mechanisms. To address this issue, we developed biocompatible DMNs fabricated from hyaluronic acid (HA) loaded with ultrasound-responsive nanoparticles, aiming at enhancing drug permeation and diffusion through ultrasound (US) assistance. Methotrexate (MTX), a first-line treatment for RA, was encapsulated in poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles containing perfluoro-n-pentane (PFP), referred to as MTX-PFP-NPs. These nanoparticles were then incorporated into DMNs, designated as MTX-PFP-NPs@DMNs. Under the cavitation effect of ultrasound, PFP undergoes a phase transition that facilitates drug release and diffusion. The synergistic effect of the DMNs system and US were demonstrated in both an ex-vivo rat skin model and a collagen-induced arthritis (CIA) mouse model. The MTX-PFP-NPs@DMNs exhibited sufficient mechanical strength to penetrate the stratum corneum and dissolve completely within 20 min, enabling effective drug delivery. The synergistic effect of the DMNs system and US was evidenced by enhanced FITC penetration and diffusion in the ex-vivo rat skin model. Additionally, in vivo studied showed improved therapeutic efficacy in reducing joint swelling, bone erosion, cartilage damage, and pro-inflammatory cytokines level compared to only MTX-PFP-NPs@DMNs. This research underscores the promising integration of DMNs technology and US, offering a high-compliance approach to transdermal drug delivery that could significantly improve treatment outcomes for chronic conditions like RA.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01876-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dissolving microneedles (DMNs) are an emerging transdermal drug delivery system that has gained increasing attention as an alternative to traditional oral and injectable methods for treating rheumatoid arthritis (RA). However, these DMNs encounter challenges related to insufficient drug diffusion through passive mechanisms. To address this issue, we developed biocompatible DMNs fabricated from hyaluronic acid (HA) loaded with ultrasound-responsive nanoparticles, aiming at enhancing drug permeation and diffusion through ultrasound (US) assistance. Methotrexate (MTX), a first-line treatment for RA, was encapsulated in poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles containing perfluoro-n-pentane (PFP), referred to as MTX-PFP-NPs. These nanoparticles were then incorporated into DMNs, designated as MTX-PFP-NPs@DMNs. Under the cavitation effect of ultrasound, PFP undergoes a phase transition that facilitates drug release and diffusion. The synergistic effect of the DMNs system and US were demonstrated in both an ex-vivo rat skin model and a collagen-induced arthritis (CIA) mouse model. The MTX-PFP-NPs@DMNs exhibited sufficient mechanical strength to penetrate the stratum corneum and dissolve completely within 20 min, enabling effective drug delivery. The synergistic effect of the DMNs system and US was evidenced by enhanced FITC penetration and diffusion in the ex-vivo rat skin model. Additionally, in vivo studied showed improved therapeutic efficacy in reducing joint swelling, bone erosion, cartilage damage, and pro-inflammatory cytokines level compared to only MTX-PFP-NPs@DMNs. This research underscores the promising integration of DMNs technology and US, offering a high-compliance approach to transdermal drug delivery that could significantly improve treatment outcomes for chronic conditions like RA.

溶解微针和超声的协同作用以增强类风湿性关节炎的透皮给药。
溶解微针(DMNs)是一种新兴的透皮给药系统,作为传统口服和注射治疗类风湿性关节炎(RA)的替代方法,越来越受到关注。然而,这些DMNs遇到了与药物通过被动机制扩散不足相关的挑战。为了解决这一问题,我们开发了由透明质酸(HA)负载超声响应纳米粒子制成的生物相容性DMNs,旨在通过超声(US)辅助增强药物的渗透和扩散。甲氨蝶呤(MTX)是治疗类风湿性关节炎的一线药物,它被包裹在含有全氟正戊烷(PFP)的聚乳酸-羟基乙酸(PLGA)基纳米颗粒中,称为MTX-PFP- nps。然后将这些纳米颗粒掺入DMNs中,命名为MTX-PFP-NPs@DMNs。在超声空化作用下,PFP发生相变,有利于药物的释放和扩散。在离体大鼠皮肤模型和胶原诱导关节炎(CIA)小鼠模型中均证实了DMNs系统和US的协同作用。MTX-PFP-NPs@DMNs具有足够的机械强度,可以穿透角质层,并在20分钟内完全溶解,从而实现有效的给药。在离体大鼠皮肤模型中,FITC的渗透和扩散增强证明了DMNs系统和US的协同作用。此外,体内研究显示,与仅MTX-PFP-NPs@DMNs相比,在减少关节肿胀、骨质侵蚀、软骨损伤和促炎细胞因子水平方面的治疗效果有所改善。这项研究强调了DMNs技术和US的整合前景,提供了一种高依从性的经皮给药方法,可以显着改善慢性疾病如RA的治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信