Yaqian Huang, Xiaodi Gong, Hui Shi, Peiyi Wang, Yundong Yuan, Cuilian Kong, Jie Zhou, Dianxing Wu, Yan Liang, Yonghong Wang, Jing Wang
{"title":"OsHYPK/NatA-mediated N-terminal acetylation regulates the homeostasis of NLR immune protein to fine-tune rice immune responses and growth.","authors":"Yaqian Huang, Xiaodi Gong, Hui Shi, Peiyi Wang, Yundong Yuan, Cuilian Kong, Jie Zhou, Dianxing Wu, Yan Liang, Yonghong Wang, Jing Wang","doi":"10.1016/j.celrep.2025.115719","DOIUrl":null,"url":null,"abstract":"<p><p>Keeping nucleotide-binding leucine-rich repeat (NLR) protein at appropriate levels is critical for plant survival. Huntingtin Yeast Partner K (OsHYPK) was previously identified as a positive regulator of N-terminal acetyltransferase A (NatA) activity in rice. Here, we find that oshypk shows enhanced resistance to Magnaporthe oryzae (M. oryzae). Through screening for suppressors of oshypk (soh), we identify suppressor soh74, which contains a mutation in RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-like NLR protein (RPM1-L1) and exhibits compromised resistance to M. oryzae. Mechanistically, declined N-terminal acetylation (NTA) degree in oshypk leads to protein accumulation of RPM1-L1, contributing to enhanced disease resistance. To restrict RPM1-L1 accumulation, OsHYPK is expressed at high levels under normal conditions. However, pathogen infection reduces OsHYPK level to release the inhibition on RPM1-L1, leading to immune activation. This study reveals a vital pathway in which OsHYPK/NatA-mediated NTA rapidly fine-tunes NLR-mediated immune response.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115719"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115719","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Keeping nucleotide-binding leucine-rich repeat (NLR) protein at appropriate levels is critical for plant survival. Huntingtin Yeast Partner K (OsHYPK) was previously identified as a positive regulator of N-terminal acetyltransferase A (NatA) activity in rice. Here, we find that oshypk shows enhanced resistance to Magnaporthe oryzae (M. oryzae). Through screening for suppressors of oshypk (soh), we identify suppressor soh74, which contains a mutation in RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-like NLR protein (RPM1-L1) and exhibits compromised resistance to M. oryzae. Mechanistically, declined N-terminal acetylation (NTA) degree in oshypk leads to protein accumulation of RPM1-L1, contributing to enhanced disease resistance. To restrict RPM1-L1 accumulation, OsHYPK is expressed at high levels under normal conditions. However, pathogen infection reduces OsHYPK level to release the inhibition on RPM1-L1, leading to immune activation. This study reveals a vital pathway in which OsHYPK/NatA-mediated NTA rapidly fine-tunes NLR-mediated immune response.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.