Adaptability assessment of Aspergillus niger and Aspergillus terreus isolated from long-term municipal/industrial effluent-irrigated soils to cadmium stress.
A Metwally Rabab, S Taha Asmaa, H Mohamed Asmaa, A Soliman Shereen
{"title":"Adaptability assessment of Aspergillus niger and Aspergillus terreus isolated from long-term municipal/industrial effluent-irrigated soils to cadmium stress.","authors":"A Metwally Rabab, S Taha Asmaa, H Mohamed Asmaa, A Soliman Shereen","doi":"10.1186/s12866-025-04000-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals (HMs) contamination is a major issue produced by industrial and mining processes, among other human activities. The capacity of fungi to eliminate HMs from the environment has drawn attention. However, the main process by which fungi protect the environment against the damaging effects of these HMs, such as cadmium (Cd), is still unknown. In this study, some fungi were isolated from HMs-polluted soil. The minimum inhibitory concentrations (MICs) and the tolerance indices of the tested isolates against Cd were evaluated. Moreover, molecular identification of the most tolerant fungal isolates (Aspergillus niger and A. terreus) was done and deposited in the GenBank NCBI database. The results showed that the colony diameter of A. niger and A. terreus was decreased gradually by the increase of Cd concentration. Also, all the tested parameters were influenced by Cd concentration. Lipid peroxidation (MDA content) was progressively increased by 12.95-105.95% (A. niger) and 17.27-85.38% (A. terreus), respectively, from 50 to 200 mg/L. PPO, APX, and POD enzymes were elevated in the presence of Cd, thus illustrating the appearance of an oxidative stress action. Compared to the non-stressed A. niger, the POD and PPO activities were enhanced by 92.00 and 104.24% at 200 mg/L Cd. Also, APX activity was increased by 58.12% at 200 mg/L. Removal efficiency and microbial accumulation capacities of A. niger and A. terreus have also been assessed. Production of succinic and malic acids by A. niger and A. terreus was increased in response to 200 mg/L Cd, in contrast to their controls (Cd-free), as revealed by HPLC analysis. These findings helped us to suggest A. niger and A. terreus as the potential mycoremediation microbes that alleviate Cd contamination. We can learn more about these fungal isolates' resistance mechanisms against different HMs through further studies.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"297"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04000-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals (HMs) contamination is a major issue produced by industrial and mining processes, among other human activities. The capacity of fungi to eliminate HMs from the environment has drawn attention. However, the main process by which fungi protect the environment against the damaging effects of these HMs, such as cadmium (Cd), is still unknown. In this study, some fungi were isolated from HMs-polluted soil. The minimum inhibitory concentrations (MICs) and the tolerance indices of the tested isolates against Cd were evaluated. Moreover, molecular identification of the most tolerant fungal isolates (Aspergillus niger and A. terreus) was done and deposited in the GenBank NCBI database. The results showed that the colony diameter of A. niger and A. terreus was decreased gradually by the increase of Cd concentration. Also, all the tested parameters were influenced by Cd concentration. Lipid peroxidation (MDA content) was progressively increased by 12.95-105.95% (A. niger) and 17.27-85.38% (A. terreus), respectively, from 50 to 200 mg/L. PPO, APX, and POD enzymes were elevated in the presence of Cd, thus illustrating the appearance of an oxidative stress action. Compared to the non-stressed A. niger, the POD and PPO activities were enhanced by 92.00 and 104.24% at 200 mg/L Cd. Also, APX activity was increased by 58.12% at 200 mg/L. Removal efficiency and microbial accumulation capacities of A. niger and A. terreus have also been assessed. Production of succinic and malic acids by A. niger and A. terreus was increased in response to 200 mg/L Cd, in contrast to their controls (Cd-free), as revealed by HPLC analysis. These findings helped us to suggest A. niger and A. terreus as the potential mycoremediation microbes that alleviate Cd contamination. We can learn more about these fungal isolates' resistance mechanisms against different HMs through further studies.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.