Reinaldo Marín, Cilia Abad, Deliana Rojas, Miguel Fernández, Fernando Ruette
{"title":"Magnesium sulfate in oxidative stress-associated pathologies: clinical, cellular, and molecular perspectives.","authors":"Reinaldo Marín, Cilia Abad, Deliana Rojas, Miguel Fernández, Fernando Ruette","doi":"10.1007/s12551-025-01292-z","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium sulfate (MgSO₄) is a therapeutically versatile agent used across various medical conditions. This review integrates experimental and computational findings to elucidate the clinical, cellular, molecular, and electronic mechanisms underlying MgSO₄'s therapeutic effects, focusing on its antioxidant properties. MgSO₄ remains the gold standard treatment for preeclampsia and eclampsia, preventing seizures and mitigating oxidative damage. In preterm birth, it offers fetal neuroprotection, although its efficacy as a tocolytic agent is limited. MgSO₄ also shows promise in treating respiratory conditions, notably severe asthma, where it acts as a bronchodilator. Its applications extend to anesthesia, pain management, and cardiac arrhythmias, reflecting its diverse pharmacological actions. Advanced computational methods, including molecular dynamics simulations and quantum chemistry calculations, have revealed how MgSO₄ interacts with cell membranes and neutralizes hydroxyl radicals. These studies suggest that MgSO₄'s antioxidant effects stem from its ability to stabilize membrane structures and modulate electron transfer processes. The therapeutic effects are mediated through multiple pathways, including calcium channel modulation, NMDA receptor antagonism, and anti-inflammatory mechanisms. Although generally safe, MgSO₄ requires careful monitoring due to its narrow therapeutic window. Future research should focus on precision dosing strategies, innovative delivery systems, and expanded therapeutic applications. A comprehensive understanding of MgSO₄'s molecular mechanisms and clinical applications will further optimize its therapeutic use.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"511-535"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01292-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium sulfate (MgSO₄) is a therapeutically versatile agent used across various medical conditions. This review integrates experimental and computational findings to elucidate the clinical, cellular, molecular, and electronic mechanisms underlying MgSO₄'s therapeutic effects, focusing on its antioxidant properties. MgSO₄ remains the gold standard treatment for preeclampsia and eclampsia, preventing seizures and mitigating oxidative damage. In preterm birth, it offers fetal neuroprotection, although its efficacy as a tocolytic agent is limited. MgSO₄ also shows promise in treating respiratory conditions, notably severe asthma, where it acts as a bronchodilator. Its applications extend to anesthesia, pain management, and cardiac arrhythmias, reflecting its diverse pharmacological actions. Advanced computational methods, including molecular dynamics simulations and quantum chemistry calculations, have revealed how MgSO₄ interacts with cell membranes and neutralizes hydroxyl radicals. These studies suggest that MgSO₄'s antioxidant effects stem from its ability to stabilize membrane structures and modulate electron transfer processes. The therapeutic effects are mediated through multiple pathways, including calcium channel modulation, NMDA receptor antagonism, and anti-inflammatory mechanisms. Although generally safe, MgSO₄ requires careful monitoring due to its narrow therapeutic window. Future research should focus on precision dosing strategies, innovative delivery systems, and expanded therapeutic applications. A comprehensive understanding of MgSO₄'s molecular mechanisms and clinical applications will further optimize its therapeutic use.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation