Jonathan Chevriau, Gerardo Zerbetto De Palma, Karina Alleva, Ari Zeida
{"title":"Hydrogen peroxide transport by aquaporins: insights from molecular modeling and simulations.","authors":"Jonathan Chevriau, Gerardo Zerbetto De Palma, Karina Alleva, Ari Zeida","doi":"10.1007/s12551-025-01288-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a key reactive oxygen species involved in cellular redox signaling and oxidative stress. Due to its polar nature, its transport across membranes is regulated by aquaporins (AQPs), membrane channels traditionally known for H<sub>2</sub>O transport. Certain AQPs, known as peroxiporins, facilitate selective H<sub>2</sub>O<sub>2</sub> permeation, playing critical roles in mantaining redox homeostasis. This review summarizes insights from molecular dynamics (MD) simulations into the mechanisms of H<sub>2</sub>O<sub>2</sub> transport through AQPs. Key structural regions, such as the selectivity filter (SF) and NPA motif, influence H<sub>2</sub>O<sub>2</sub> permeation, with energy profiles revealing differences from H<sub>2</sub>O transport. While molecular mimicry suggests similarities in the movement of H<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub>, specific interactions and energetic barriers highlight the complexity of the process. We highlight the need for integrating computational and experimental findings for further studies to unify mechanistic understanding and develop applications in redox biology.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"301-308"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01288-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) is a key reactive oxygen species involved in cellular redox signaling and oxidative stress. Due to its polar nature, its transport across membranes is regulated by aquaporins (AQPs), membrane channels traditionally known for H2O transport. Certain AQPs, known as peroxiporins, facilitate selective H2O2 permeation, playing critical roles in mantaining redox homeostasis. This review summarizes insights from molecular dynamics (MD) simulations into the mechanisms of H2O2 transport through AQPs. Key structural regions, such as the selectivity filter (SF) and NPA motif, influence H2O2 permeation, with energy profiles revealing differences from H2O transport. While molecular mimicry suggests similarities in the movement of H2O and H2O2, specific interactions and energetic barriers highlight the complexity of the process. We highlight the need for integrating computational and experimental findings for further studies to unify mechanistic understanding and develop applications in redox biology.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation