Joao Aguilar, Silvana A Rosú, José Ulloa, German Gunther, Bruno F Urbano, M Alejandra Tricerri, Susana A Sánchez
{"title":"Studying biological events using biopolymeric matrices.","authors":"Joao Aguilar, Silvana A Rosú, José Ulloa, German Gunther, Bruno F Urbano, M Alejandra Tricerri, Susana A Sánchez","doi":"10.1007/s12551-025-01303-z","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methodologies to study in vitro biological processes include simplified laboratory models where different parameters can be measured in a very controlled environment. The most used of these practices is cell plate-culturing in aqueous media. In this minimalistic model, essential components of the biological system might be ignored. One of them, disregarded for a long time, is the extracellular matrix (ECM). Extracellular matrix in eukaryotic cells is not only a frame for cells and biological components, but also an active partner of cellular metabolism and participates in several normal and pathological biological processes in a dynamic manner. ECM of eukaryotic cells has a very complex structure. Also, its mechanical properties (stiffness, viscoelasticity) depend on the organ it is associated with, and may vary from a very fluid (plasma) to a very solid (bones) structure. ECM structure and composition are very dynamic and experience temporal structural and topological changes, affecting all the existing interactions. When mimicking the ECM, three aspects are considered: the chemical environment and the physical and structural properties. In this review, we present two lines of research studying the role of the ECM in two biological implications: membrane fluidity heterogeneity and protein retention and aggregation. For these studies, we used biopolymeric matrices with very controlled features to evaluate the two events. We use traditional biochemical techniques and fluorescence microscopy to study the biological systems and traditional polymer techniques (rheology, SEM) to characterize the polymeric matrices.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"385-394"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01303-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional methodologies to study in vitro biological processes include simplified laboratory models where different parameters can be measured in a very controlled environment. The most used of these practices is cell plate-culturing in aqueous media. In this minimalistic model, essential components of the biological system might be ignored. One of them, disregarded for a long time, is the extracellular matrix (ECM). Extracellular matrix in eukaryotic cells is not only a frame for cells and biological components, but also an active partner of cellular metabolism and participates in several normal and pathological biological processes in a dynamic manner. ECM of eukaryotic cells has a very complex structure. Also, its mechanical properties (stiffness, viscoelasticity) depend on the organ it is associated with, and may vary from a very fluid (plasma) to a very solid (bones) structure. ECM structure and composition are very dynamic and experience temporal structural and topological changes, affecting all the existing interactions. When mimicking the ECM, three aspects are considered: the chemical environment and the physical and structural properties. In this review, we present two lines of research studying the role of the ECM in two biological implications: membrane fluidity heterogeneity and protein retention and aggregation. For these studies, we used biopolymeric matrices with very controlled features to evaluate the two events. We use traditional biochemical techniques and fluorescence microscopy to study the biological systems and traditional polymer techniques (rheology, SEM) to characterize the polymeric matrices.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation