Structural determinants of soft memory in recurrent biological networks.

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2025-03-03 eCollection Date: 2025-04-01 DOI:10.1007/s12551-025-01295-w
Maria Sol Vidal-Saez, Jordi Garcia-Ojalvo
{"title":"Structural determinants of soft memory in recurrent biological networks.","authors":"Maria Sol Vidal-Saez, Jordi Garcia-Ojalvo","doi":"10.1007/s12551-025-01295-w","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent neural networks are frequently studied in terms of their information-processing capabilities. The structural properties of these networks are seldom considered, beyond those emerging from the connectivity tuning necessary for network training. However, real biological networks have non-contingent architectures that have been shaped by evolution over eons, constrained partly by information-processing criteria, but more generally by fitness maximization requirements. Here, we examine the topological properties of existing biological networks, focusing in particular on gene regulatory networks in bacteria. We identify structural features, both local and global, that dictate the ability of recurrent networks to store information on the fly and process complex time-dependent inputs.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"259-269"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01295-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent neural networks are frequently studied in terms of their information-processing capabilities. The structural properties of these networks are seldom considered, beyond those emerging from the connectivity tuning necessary for network training. However, real biological networks have non-contingent architectures that have been shaped by evolution over eons, constrained partly by information-processing criteria, but more generally by fitness maximization requirements. Here, we examine the topological properties of existing biological networks, focusing in particular on gene regulatory networks in bacteria. We identify structural features, both local and global, that dictate the ability of recurrent networks to store information on the fly and process complex time-dependent inputs.

循环生物网络中软记忆的结构决定因素。
递归神经网络在信息处理能力方面经常被研究。除了网络训练所需的连接性调优之外,这些网络的结构特性很少被考虑。然而,真正的生物网络具有非偶然的架构,这些架构是由千万年的进化形成的,部分受到信息处理标准的限制,但更普遍的是受到适应性最大化要求的限制。在这里,我们研究了现有生物网络的拓扑特性,特别关注细菌中的基因调控网络。我们确定了局部和全局的结构特征,这些结构特征决定了循环网络在飞行中存储信息和处理复杂的时间依赖输入的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信