S E Faraj, M R Montes, R D Peluffo, R M González-Lebrero, R C Rossi
{"title":"Non-hyperbolic enzyme kinetics: the case of P-type ATPases.","authors":"S E Faraj, M R Montes, R D Peluffo, R M González-Lebrero, R C Rossi","doi":"10.1007/s12551-025-01277-y","DOIUrl":null,"url":null,"abstract":"<p><p>Many enzymes operate through mechanisms that comply with the Michaelis-Menten equation (hyperbolic kinetics). The theoretical framework for analyzing these enzymes, widely developed in the literature, is largely based on the ability to linearize the equation and apply linear regression to experimental data. However, certain systems, such as P-type ATPases, present mechanisms that do not fit into hyperbolic models, requiring the development of more complex equations. This study explores the underlying causes of the non-hyperbolic behavior observed for P-type ATPases and reviews some methodologies used for their analysis. Here, we propose to employ rational equations, whose form limits the range of possible kinetic models applicable to the system, offering a structured approach to its analysis.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"479-490"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01277-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Many enzymes operate through mechanisms that comply with the Michaelis-Menten equation (hyperbolic kinetics). The theoretical framework for analyzing these enzymes, widely developed in the literature, is largely based on the ability to linearize the equation and apply linear regression to experimental data. However, certain systems, such as P-type ATPases, present mechanisms that do not fit into hyperbolic models, requiring the development of more complex equations. This study explores the underlying causes of the non-hyperbolic behavior observed for P-type ATPases and reviews some methodologies used for their analysis. Here, we propose to employ rational equations, whose form limits the range of possible kinetic models applicable to the system, offering a structured approach to its analysis.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation