Patrícia Alves de Matos, Hellen Cristina Novais de Oliveira, Murillo Néia Thomaz da Silva, Edson Nossol, Tayana Mazin Tsubone
{"title":"Metal hexacyanoferrates in photodynamic and photothermal therapies.","authors":"Patrícia Alves de Matos, Hellen Cristina Novais de Oliveira, Murillo Néia Thomaz da Silva, Edson Nossol, Tayana Mazin Tsubone","doi":"10.1007/s12551-025-01287-w","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) involves a reaction between photosensitizers (PS) and oxygen (O<sub>2</sub>) to generate cytotoxic reactive oxygen species (ROS), which effectively eliminate undesired cells. Compared to conventional treatments like surgery, radiation, and chemotherapy, PDT offers several advantages, including minimal toxicity to healthy tissues and no long-term systemic side effects. However, its therapeutic efficacy is limited under hypoxic conditions, as the process relies on the presence of oxygen in the target tissue. To address these challenges, combining PDT with photothermal therapy (PTT) creates a synergistic phototherapy approach. The heat generated by PTT enhances blood flow in tumors, increasing oxygen delivery to tumor sites and boosting PDT's effectiveness. These combinations are being explored in PDT/PTT as an innovative, synergistic cancer treatment strategy, aiming to enhance the therapeutic index. One promising strategy to connect both PDT and PTT therapies involves developing nanosystems that integrate metal hexacyanoferrate (MHCF) nanoparticles with multifunctional PS. Here, we review several studies that have evaluated the combination of MHCF with various PSs to apply PDT and PTT synergistically. We discuss how nanocomposites based on these materials can address the challenges and limitations still faced in PDT/PTT. This review aims to identify new opportunities for the application of metal hexacyanoferrates in these phototherapeutic modalities.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"561-577"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01287-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) involves a reaction between photosensitizers (PS) and oxygen (O2) to generate cytotoxic reactive oxygen species (ROS), which effectively eliminate undesired cells. Compared to conventional treatments like surgery, radiation, and chemotherapy, PDT offers several advantages, including minimal toxicity to healthy tissues and no long-term systemic side effects. However, its therapeutic efficacy is limited under hypoxic conditions, as the process relies on the presence of oxygen in the target tissue. To address these challenges, combining PDT with photothermal therapy (PTT) creates a synergistic phototherapy approach. The heat generated by PTT enhances blood flow in tumors, increasing oxygen delivery to tumor sites and boosting PDT's effectiveness. These combinations are being explored in PDT/PTT as an innovative, synergistic cancer treatment strategy, aiming to enhance the therapeutic index. One promising strategy to connect both PDT and PTT therapies involves developing nanosystems that integrate metal hexacyanoferrate (MHCF) nanoparticles with multifunctional PS. Here, we review several studies that have evaluated the combination of MHCF with various PSs to apply PDT and PTT synergistically. We discuss how nanocomposites based on these materials can address the challenges and limitations still faced in PDT/PTT. This review aims to identify new opportunities for the application of metal hexacyanoferrates in these phototherapeutic modalities.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation