Metal hexacyanoferrates in photodynamic and photothermal therapies.

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2025-02-20 eCollection Date: 2025-04-01 DOI:10.1007/s12551-025-01287-w
Patrícia Alves de Matos, Hellen Cristina Novais de Oliveira, Murillo Néia Thomaz da Silva, Edson Nossol, Tayana Mazin Tsubone
{"title":"Metal hexacyanoferrates in photodynamic and photothermal therapies.","authors":"Patrícia Alves de Matos, Hellen Cristina Novais de Oliveira, Murillo Néia Thomaz da Silva, Edson Nossol, Tayana Mazin Tsubone","doi":"10.1007/s12551-025-01287-w","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) involves a reaction between photosensitizers (PS) and oxygen (O<sub>2</sub>) to generate cytotoxic reactive oxygen species (ROS), which effectively eliminate undesired cells. Compared to conventional treatments like surgery, radiation, and chemotherapy, PDT offers several advantages, including minimal toxicity to healthy tissues and no long-term systemic side effects. However, its therapeutic efficacy is limited under hypoxic conditions, as the process relies on the presence of oxygen in the target tissue. To address these challenges, combining PDT with photothermal therapy (PTT) creates a synergistic phototherapy approach. The heat generated by PTT enhances blood flow in tumors, increasing oxygen delivery to tumor sites and boosting PDT's effectiveness. These combinations are being explored in PDT/PTT as an innovative, synergistic cancer treatment strategy, aiming to enhance the therapeutic index. One promising strategy to connect both PDT and PTT therapies involves developing nanosystems that integrate metal hexacyanoferrate (MHCF) nanoparticles with multifunctional PS. Here, we review several studies that have evaluated the combination of MHCF with various PSs to apply PDT and PTT synergistically. We discuss how nanocomposites based on these materials can address the challenges and limitations still faced in PDT/PTT. This review aims to identify new opportunities for the application of metal hexacyanoferrates in these phototherapeutic modalities.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"561-577"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01287-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) involves a reaction between photosensitizers (PS) and oxygen (O2) to generate cytotoxic reactive oxygen species (ROS), which effectively eliminate undesired cells. Compared to conventional treatments like surgery, radiation, and chemotherapy, PDT offers several advantages, including minimal toxicity to healthy tissues and no long-term systemic side effects. However, its therapeutic efficacy is limited under hypoxic conditions, as the process relies on the presence of oxygen in the target tissue. To address these challenges, combining PDT with photothermal therapy (PTT) creates a synergistic phototherapy approach. The heat generated by PTT enhances blood flow in tumors, increasing oxygen delivery to tumor sites and boosting PDT's effectiveness. These combinations are being explored in PDT/PTT as an innovative, synergistic cancer treatment strategy, aiming to enhance the therapeutic index. One promising strategy to connect both PDT and PTT therapies involves developing nanosystems that integrate metal hexacyanoferrate (MHCF) nanoparticles with multifunctional PS. Here, we review several studies that have evaluated the combination of MHCF with various PSs to apply PDT and PTT synergistically. We discuss how nanocomposites based on these materials can address the challenges and limitations still faced in PDT/PTT. This review aims to identify new opportunities for the application of metal hexacyanoferrates in these phototherapeutic modalities.

金属六氰高铁在光动力和光热疗法中的应用。
光动力疗法(PDT)涉及光敏剂(PS)和氧气(O2)之间的反应,产生细胞毒性活性氧(ROS),有效地消除不需要的细胞。与手术、放疗和化疗等传统治疗方法相比,PDT有几个优点,包括对健康组织的毒性最小,没有长期的全身副作用。然而,它的治疗效果在缺氧条件下是有限的,因为这个过程依赖于目标组织中氧气的存在。为了解决这些挑战,将PDT与光热疗法(PTT)相结合创造了一种协同光疗方法。PTT产生的热量增强了肿瘤内的血液流动,增加了向肿瘤部位的氧气输送,提高了PDT的有效性。这些组合正在PDT/PTT中作为一种创新的、协同的癌症治疗策略进行探索,旨在提高治疗指数。连接PDT和PTT治疗的一个有希望的策略是开发将金属六氰铁酸盐(MHCF)纳米颗粒与多功能PS结合的纳米系统。在这里,我们回顾了几项研究,这些研究已经评估了MHCF与各种PS的组合,以协同应用PDT和PTT。我们讨论了基于这些材料的纳米复合材料如何解决PDT/PTT中仍然面临的挑战和限制。本文综述旨在确定金属六氰高铁酸盐在这些光疗方式中的应用的新机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信