Investigation of pressure balance in proximity of sidewalls in deterministic lateral displacement.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2025-05-13 eCollection Date: 2025-05-01 DOI:10.1063/5.0272397
Aryan Mehboudi, Shrawan Singhal, S V Sreenivasan
{"title":"Investigation of pressure balance in proximity of sidewalls in deterministic lateral displacement.","authors":"Aryan Mehboudi, Shrawan Singhal, S V Sreenivasan","doi":"10.1063/5.0272397","DOIUrl":null,"url":null,"abstract":"<p><p>Deterministic lateral displacement (DLD) is a popular technique for the size-based separation of particles. A key challenge in the design of DLD chips is to eliminate the fluid flow disturbance caused by channel sidewalls intersecting with pillar matrix. While there are numerous reports attempting to mitigate this issue by adjusting the gaps between pillars on the sidewalls and the closest ones residing on the bulk grid of DLD, there are only a few works that also configure the axial gap of pillars adjacent to the accumulation sidewall. Herein, we study various designs numerically to investigate the effects of geometrical configurations of sidewalls on the critical diameter and first stream flux fraction variations across the channel. Our results show that regardless of the model used for the boundary gap profile, applying a pressure balance scheme can improve the separation performance by reducing the critical diameter variations. In particular, we found that for a given boundary gap distribution, there can be two desired parameter sets with relatively low critical diameter variations. One is related to sufficiently low lateral resistance of interface unit cells next to the accumulation sidewall, while the other one emerges by reducing the axial resistance of the interface unit cells to an appropriate extent. This work should pave the way for designing DLD systems with improved performance, which can be critically important for applications such as the separation of rare cells, among others, wherein target species need to be concentrated into as narrow a stream as possible downstream of the device to enhance purity and the recovery rate simultaneously.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 3","pages":"034102"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0272397","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deterministic lateral displacement (DLD) is a popular technique for the size-based separation of particles. A key challenge in the design of DLD chips is to eliminate the fluid flow disturbance caused by channel sidewalls intersecting with pillar matrix. While there are numerous reports attempting to mitigate this issue by adjusting the gaps between pillars on the sidewalls and the closest ones residing on the bulk grid of DLD, there are only a few works that also configure the axial gap of pillars adjacent to the accumulation sidewall. Herein, we study various designs numerically to investigate the effects of geometrical configurations of sidewalls on the critical diameter and first stream flux fraction variations across the channel. Our results show that regardless of the model used for the boundary gap profile, applying a pressure balance scheme can improve the separation performance by reducing the critical diameter variations. In particular, we found that for a given boundary gap distribution, there can be two desired parameter sets with relatively low critical diameter variations. One is related to sufficiently low lateral resistance of interface unit cells next to the accumulation sidewall, while the other one emerges by reducing the axial resistance of the interface unit cells to an appropriate extent. This work should pave the way for designing DLD systems with improved performance, which can be critically important for applications such as the separation of rare cells, among others, wherein target species need to be concentrated into as narrow a stream as possible downstream of the device to enhance purity and the recovery rate simultaneously.

确定性侧向位移中侧壁附近压力平衡的研究。
确定性横向位移(DLD)是一种基于粒径的颗粒分离技术。DLD芯片设计的一个关键挑战是消除通道侧壁与柱阵相交所造成的流体流动干扰。虽然有许多报告试图通过调整侧壁上的柱子与位于DLD大网格上的最近的柱子之间的间隙来缓解这个问题,但只有少数工作还配置了与堆积侧壁相邻的柱子的轴向间隙。在此,我们研究了不同的设计,以研究侧壁的几何构型对临界直径和第一流通量分数的影响。研究结果表明,无论采用何种模型,采用压力平衡方案都可以通过减小临界直径变化来提高分离性能。特别是,我们发现对于给定的边界间隙分布,可以有两个临界直径变化相对较小的理想参数集。一种与靠近堆积侧壁的界面单体胞的侧阻力足够低有关,另一种与界面单体胞的轴向阻力适当降低有关。这项工作应该为设计具有改进性能的DLD系统铺平道路,这对于诸如稀有细胞分离等应用至关重要,其中目标物种需要浓缩到尽可能窄的设备下游流中,以同时提高纯度和回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信