{"title":"Investigation of pressure balance in proximity of sidewalls in deterministic lateral displacement.","authors":"Aryan Mehboudi, Shrawan Singhal, S V Sreenivasan","doi":"10.1063/5.0272397","DOIUrl":null,"url":null,"abstract":"<p><p>Deterministic lateral displacement (DLD) is a popular technique for the size-based separation of particles. A key challenge in the design of DLD chips is to eliminate the fluid flow disturbance caused by channel sidewalls intersecting with pillar matrix. While there are numerous reports attempting to mitigate this issue by adjusting the gaps between pillars on the sidewalls and the closest ones residing on the bulk grid of DLD, there are only a few works that also configure the axial gap of pillars adjacent to the accumulation sidewall. Herein, we study various designs numerically to investigate the effects of geometrical configurations of sidewalls on the critical diameter and first stream flux fraction variations across the channel. Our results show that regardless of the model used for the boundary gap profile, applying a pressure balance scheme can improve the separation performance by reducing the critical diameter variations. In particular, we found that for a given boundary gap distribution, there can be two desired parameter sets with relatively low critical diameter variations. One is related to sufficiently low lateral resistance of interface unit cells next to the accumulation sidewall, while the other one emerges by reducing the axial resistance of the interface unit cells to an appropriate extent. This work should pave the way for designing DLD systems with improved performance, which can be critically important for applications such as the separation of rare cells, among others, wherein target species need to be concentrated into as narrow a stream as possible downstream of the device to enhance purity and the recovery rate simultaneously.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 3","pages":"034102"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0272397","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deterministic lateral displacement (DLD) is a popular technique for the size-based separation of particles. A key challenge in the design of DLD chips is to eliminate the fluid flow disturbance caused by channel sidewalls intersecting with pillar matrix. While there are numerous reports attempting to mitigate this issue by adjusting the gaps between pillars on the sidewalls and the closest ones residing on the bulk grid of DLD, there are only a few works that also configure the axial gap of pillars adjacent to the accumulation sidewall. Herein, we study various designs numerically to investigate the effects of geometrical configurations of sidewalls on the critical diameter and first stream flux fraction variations across the channel. Our results show that regardless of the model used for the boundary gap profile, applying a pressure balance scheme can improve the separation performance by reducing the critical diameter variations. In particular, we found that for a given boundary gap distribution, there can be two desired parameter sets with relatively low critical diameter variations. One is related to sufficiently low lateral resistance of interface unit cells next to the accumulation sidewall, while the other one emerges by reducing the axial resistance of the interface unit cells to an appropriate extent. This work should pave the way for designing DLD systems with improved performance, which can be critically important for applications such as the separation of rare cells, among others, wherein target species need to be concentrated into as narrow a stream as possible downstream of the device to enhance purity and the recovery rate simultaneously.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...