Boqi Zhou, Huaqing Tan, Yuxuan Wang, Bin Huang, Zhijie Wang, Shihui Zhang, Xiaobo Zhu, Zhan Wang, Junlin Zhou, Yuntai Cao
{"title":"A computed tomography-based radiomics prediction model for BRAF mutation status in colorectal cancer.","authors":"Boqi Zhou, Huaqing Tan, Yuxuan Wang, Bin Huang, Zhijie Wang, Shihui Zhang, Xiaobo Zhu, Zhan Wang, Junlin Zhou, Yuntai Cao","doi":"10.1007/s00261-025-04983-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients.</p><p><strong>Methods: </strong>In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity.</p><p><strong>Results: </strong>Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667.</p><p><strong>Conclusions: </strong>A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04983-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients.
Methods: In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity.
Results: Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667.
Conclusions: A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits