Hanbing Xu, Gang Wang, Zhilin Jiang, Yaobao Han, Weiming Zhao, Hao Zhang, Hong Liu, Huayue Liu, Zhen Li, Fuhai Ji
{"title":"Ultrasmall Nanoparticles Mitigate Tau Hyperphosphorylation to Restore Synaptic Integrity and Boost Cognitive Function in Alzheimer's Disease.","authors":"Hanbing Xu, Gang Wang, Zhilin Jiang, Yaobao Han, Weiming Zhao, Hao Zhang, Hong Liu, Huayue Liu, Zhen Li, Fuhai Ji","doi":"10.1002/adhm.202500941","DOIUrl":null,"url":null,"abstract":"<p><p>Tau hyperphosphorylation represents a critical pathological hallmark of Alzheimer's disease (AD), a prevalent neurodegenerative disorder characterized by progressive cognitive decline. The ubiquitin-specific proteases 14 (USP14) impairs proteasomal function and accelerates hyperphosphorylated Tau accumulation, making it an attractive therapeutic target for modulating the ubiquitin-proteasome pathway in AD treatment. In this study, it is reported that wogonoside-functionalized ultrasmall Cu<sub>2-x</sub>Se nanoparticles (CSPW NPs) significantly reduce hyperphosphorylated Tau accumulation and alleviate AD symptoms. The therapeutic mechanism involves activation of the ubiquitin-proteasome pathway through USP14 inhibition by CSPW NPs, thereby preventing hyperphosphorylated Tau accumulation. Furthermore, after cell membrane coating (CSPW@CM NPs), these nanoparticles efficiently cross the blood-brain barrier with focused ultrasound assistance and accumulate in the brain to target neurons. Within neurons, they inhibit USP14, reduce phosphorylated Tau deposition, enhance microtubule stability, mitigate synaptic loss, restore synaptic integrity, and ultimately alleviate cognitive dysfunction in AD mice. The findings highlight the substantial potential of USP14 modulation for mitigating Tau hyperphosphorylation in the treatment of AD and related tauopathies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2500941"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202500941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tau hyperphosphorylation represents a critical pathological hallmark of Alzheimer's disease (AD), a prevalent neurodegenerative disorder characterized by progressive cognitive decline. The ubiquitin-specific proteases 14 (USP14) impairs proteasomal function and accelerates hyperphosphorylated Tau accumulation, making it an attractive therapeutic target for modulating the ubiquitin-proteasome pathway in AD treatment. In this study, it is reported that wogonoside-functionalized ultrasmall Cu2-xSe nanoparticles (CSPW NPs) significantly reduce hyperphosphorylated Tau accumulation and alleviate AD symptoms. The therapeutic mechanism involves activation of the ubiquitin-proteasome pathway through USP14 inhibition by CSPW NPs, thereby preventing hyperphosphorylated Tau accumulation. Furthermore, after cell membrane coating (CSPW@CM NPs), these nanoparticles efficiently cross the blood-brain barrier with focused ultrasound assistance and accumulate in the brain to target neurons. Within neurons, they inhibit USP14, reduce phosphorylated Tau deposition, enhance microtubule stability, mitigate synaptic loss, restore synaptic integrity, and ultimately alleviate cognitive dysfunction in AD mice. The findings highlight the substantial potential of USP14 modulation for mitigating Tau hyperphosphorylation in the treatment of AD and related tauopathies.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.