Gisela Marín-Capuz, José Luis Crespo-Picazo, Simon Demetropoulos, Lucia Garrido, Jane Hardwick, Imed Jribi, Dimitris Margaritoulis, Aliki Panagopoulou, Ana R. Patrício, Nathan J. Robinson, Marta Pascual, Cinta Pegueroles, Carlos Carreras
{"title":"Incipient Range Expansion of Green Turtles in the Mediterranean","authors":"Gisela Marín-Capuz, José Luis Crespo-Picazo, Simon Demetropoulos, Lucia Garrido, Jane Hardwick, Imed Jribi, Dimitris Margaritoulis, Aliki Panagopoulou, Ana R. Patrício, Nathan J. Robinson, Marta Pascual, Cinta Pegueroles, Carlos Carreras","doi":"10.1111/mec.17790","DOIUrl":null,"url":null,"abstract":"<p>In response to global climate change, numerous taxa are expanding their living ranges. In highly migratory species such as sea turtles, this expansion may be driven by individuals from nearby or distant areas. Recent nests outside the species' typical nesting range and reports of adult-sized individuals in the western Mediterranean suggest a green turtle (<i>Chelonia mydas</i>) range expansion into the central and western Mediterranean. To assess the green turtles' origin in these novel habitats, we built a genomic baseline using 2bRAD sequencing on five individuals from each of three Regional Management Units (RMUs): North Atlantic, South Atlantic and Mediterranean. We then compared this baseline with genotyped hatchlings from three nests laid in new central and eastern Mediterranean sites and four mature-sized green turtles tagged with satellite telemetry in the western Mediterranean. Our analyses revealed that the Tunisia nest originated from the South Atlantic RMU, while the Crete nests were produced by turtles from the Mediterranean RMU. Additionally, the three adult-sized turtles sampled in the southwestern Mediterranean were assigned to the South Atlantic RMU, while the mature-sized individual sampled in the northwestern Mediterranean belonged to the Mediterranean RMU. These results suggest a simultaneous incipient colonisation by two geographically distant RMUs. We propose that the range expansion of green turtles into the central and western Mediterranean is likely climate driven and these populations may become globally important as temperatures rise. Finally, our results highlight the essential role of the cost-effective RAD-Seq genomic assessment combined with tagging data to understand potential new colonisations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17790","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17790","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to global climate change, numerous taxa are expanding their living ranges. In highly migratory species such as sea turtles, this expansion may be driven by individuals from nearby or distant areas. Recent nests outside the species' typical nesting range and reports of adult-sized individuals in the western Mediterranean suggest a green turtle (Chelonia mydas) range expansion into the central and western Mediterranean. To assess the green turtles' origin in these novel habitats, we built a genomic baseline using 2bRAD sequencing on five individuals from each of three Regional Management Units (RMUs): North Atlantic, South Atlantic and Mediterranean. We then compared this baseline with genotyped hatchlings from three nests laid in new central and eastern Mediterranean sites and four mature-sized green turtles tagged with satellite telemetry in the western Mediterranean. Our analyses revealed that the Tunisia nest originated from the South Atlantic RMU, while the Crete nests were produced by turtles from the Mediterranean RMU. Additionally, the three adult-sized turtles sampled in the southwestern Mediterranean were assigned to the South Atlantic RMU, while the mature-sized individual sampled in the northwestern Mediterranean belonged to the Mediterranean RMU. These results suggest a simultaneous incipient colonisation by two geographically distant RMUs. We propose that the range expansion of green turtles into the central and western Mediterranean is likely climate driven and these populations may become globally important as temperatures rise. Finally, our results highlight the essential role of the cost-effective RAD-Seq genomic assessment combined with tagging data to understand potential new colonisations.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms