{"title":"Plant synthetic biology-based biofortification, strategies and recent progresses.","authors":"Kai Wang, Zhongchi Liu","doi":"10.1111/jipb.13934","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden hunger, caused by chronic micronutrient deficiencies, affects billions of people worldwide and remains a critical public health issue despite progress in food production. Biofortification offers a promising solution by enhancing nutrient levels within plant tissues through traditional breeding or advanced biotechnologies. Recent advancements in plant synthetic biology have significantly improved biofortification strategies, enabling precise and targeted nutrient enrichment. This mini-review outlines five core strategies in synthetic biology-based biofortification: overexpression of endogenous biosynthetic genes, introduction of heterologous biosynthetic pathways, expression of nutrient-specific transporters, optimization of transcriptional regulation, and protein (directed) evolution. Vitamin B<sub>1</sub> biofortification serves as a primary illustrative example due to its historical importance and ongoing relevance. Recent breakthroughs, particularly from Chinese research teams, are also highlighted. Together, these strategies offer transformative potential for addressing global nutritional challenges through precise, sustainable and innovative plant-based approaches.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13934","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hidden hunger, caused by chronic micronutrient deficiencies, affects billions of people worldwide and remains a critical public health issue despite progress in food production. Biofortification offers a promising solution by enhancing nutrient levels within plant tissues through traditional breeding or advanced biotechnologies. Recent advancements in plant synthetic biology have significantly improved biofortification strategies, enabling precise and targeted nutrient enrichment. This mini-review outlines five core strategies in synthetic biology-based biofortification: overexpression of endogenous biosynthetic genes, introduction of heterologous biosynthetic pathways, expression of nutrient-specific transporters, optimization of transcriptional regulation, and protein (directed) evolution. Vitamin B1 biofortification serves as a primary illustrative example due to its historical importance and ongoing relevance. Recent breakthroughs, particularly from Chinese research teams, are also highlighted. Together, these strategies offer transformative potential for addressing global nutritional challenges through precise, sustainable and innovative plant-based approaches.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.