From saccharides to synthetics: exploring biomaterial scaffolds as cell transduction enhancers.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Micah Mallory, Emma Grace Johnson, Soumen Saha, Sanika Pandit, Joshua T McCune, Mengnan Dennis, Jessica M Gluck, Craig L Duvall, Ashley C Brown, Ashutosh Chilkoti, Yevgeny Brudno
{"title":"From saccharides to synthetics: exploring biomaterial scaffolds as cell transduction enhancers.","authors":"Micah Mallory, Emma Grace Johnson, Soumen Saha, Sanika Pandit, Joshua T McCune, Mengnan Dennis, Jessica M Gluck, Craig L Duvall, Ashley C Brown, Ashutosh Chilkoti, Yevgeny Brudno","doi":"10.1039/d4bm01588f","DOIUrl":null,"url":null,"abstract":"<p><p>Dry, transduction biomaterial scaffolds (Drydux) represent a novel platform for enhancing viral transduction, achieving drastic improvements in transduction efficiency (from ∼10% to >80%) while simplifying production of potent genetically engineered cells. This technology addresses a critical bottleneck in cell therapy manufacturing, where conventional methods require complex protocols and often yield suboptimal results. However, the underlying material science driving Drydux-enhanced transduction remains unclear. Here, we comprehensively assess biomaterial properties that influence viral transduction enhancement through systematic testing of polysaccharides, proteins, elastin-like polypeptides (ELPs), and synthetic polymers. Our findings reveal that surface porosity and liquid absorption are primary drivers of transduction enhancement, while polymer charge and flexibility play secondary roles. Negatively charged and flexible materials-particularly gelatin, hyaluronan, and alginate-demonstrated superior performance. Notably, despite promising material characteristics, synthetic polymers failed to enhance transduction, highlighting the unique advantages of specific biomaterial compositions. By elucidating these structure-function relationships, this work establishes design principles for optimizing biomaterial-enhanced transduction and expands the Drydux platform's potential for transforming cell therapy manufacturing, regenerative medicine, and beyond.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01588f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Dry, transduction biomaterial scaffolds (Drydux) represent a novel platform for enhancing viral transduction, achieving drastic improvements in transduction efficiency (from ∼10% to >80%) while simplifying production of potent genetically engineered cells. This technology addresses a critical bottleneck in cell therapy manufacturing, where conventional methods require complex protocols and often yield suboptimal results. However, the underlying material science driving Drydux-enhanced transduction remains unclear. Here, we comprehensively assess biomaterial properties that influence viral transduction enhancement through systematic testing of polysaccharides, proteins, elastin-like polypeptides (ELPs), and synthetic polymers. Our findings reveal that surface porosity and liquid absorption are primary drivers of transduction enhancement, while polymer charge and flexibility play secondary roles. Negatively charged and flexible materials-particularly gelatin, hyaluronan, and alginate-demonstrated superior performance. Notably, despite promising material characteristics, synthetic polymers failed to enhance transduction, highlighting the unique advantages of specific biomaterial compositions. By elucidating these structure-function relationships, this work establishes design principles for optimizing biomaterial-enhanced transduction and expands the Drydux platform's potential for transforming cell therapy manufacturing, regenerative medicine, and beyond.

从糖类到合成物:探索作为细胞转导增强剂的生物材料支架。
干燥转导生物材料支架(Drydux)代表了一种增强病毒转导的新平台,在简化强效基因工程细胞生产的同时,实现了转导效率的显著提高(从10%到80%)。该技术解决了细胞治疗制造中的一个关键瓶颈,传统方法需要复杂的方案,并且通常产生不理想的结果。然而,驱动drydux增强转导的基础材料科学仍不清楚。在这里,我们通过对多糖、蛋白质、弹性蛋白样多肽(ELPs)和合成聚合物的系统测试,全面评估影响病毒转导增强的生物材料特性。我们的研究结果表明,表面孔隙度和液体吸收是传导增强的主要驱动因素,而聚合物电荷和柔韧性起次要作用。带负电荷的柔韧材料——尤其是明胶、透明质酸和海藻酸盐——表现出优越的性能。值得注意的是,尽管有很好的材料特性,合成聚合物未能增强转导,突出了特定生物材料组合物的独特优势。通过阐明这些结构-功能关系,这项工作建立了优化生物材料增强转导的设计原则,并扩大了Drydux平台在转化细胞治疗制造、再生医学等领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信