TrIP2: Expanding the Transformer Interatomic Potential Demonstrates Architectural Scalability for Organic Compounds.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-29 Epub Date: 2025-05-15 DOI:10.1021/acs.jpca.5c00391
Joshua Ebbert, Bryce Hedelius, Jyothish Joy, Daniel H Ess, Dennis Della Corte
{"title":"TrIP2: Expanding the Transformer Interatomic Potential Demonstrates Architectural Scalability for Organic Compounds.","authors":"Joshua Ebbert, Bryce Hedelius, Jyothish Joy, Daniel H Ess, Dennis Della Corte","doi":"10.1021/acs.jpca.5c00391","DOIUrl":null,"url":null,"abstract":"<p><p>TrIP2 is an advanced version of the transformer interatomic potential (TrIP) trained on the expanded ANI-2x data set, including more diverse molecular configurations with sulfur, fluorine, and chlorine. It leverages the equivariant SE(3)-transformer architecture, incorporating physical biases and continuous atomic representations. TrIP was introduced as a highly promising transferable interatomic potential, which we show here to generalize to new atom types with no alterations to the underlying model design. Benchmarking on COMP6 energy and force calculations, structure minimization tasks, torsion drives, and applications to molecules with unexpected conformational energy minima demonstrates TrIP2's high accuracy and transferability. Direct architectural comparisons demonstrate superior performance against ANI-2x, while holistic model evaluations─including training data and level-of-theory considerations─show comparative performance with state-of-the-art models like AIMNet2 and MACE-OFF23. Notably, TrIP2 achieves state-of-the-art force prediction performance on the COMP6 benchmarks and closely approaches DFT-optimized structures in torsion drives and geometry optimization tasks. Without requiring any architectural modifications, TrIP2 successfully capitalizes on additional training data to deliver enhanced generalizability and precision, establishing itself as a robust and scalable framework capable of accommodating future expansions or applications to new domains with minimal reengineering.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4757-4766"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00391","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

TrIP2 is an advanced version of the transformer interatomic potential (TrIP) trained on the expanded ANI-2x data set, including more diverse molecular configurations with sulfur, fluorine, and chlorine. It leverages the equivariant SE(3)-transformer architecture, incorporating physical biases and continuous atomic representations. TrIP was introduced as a highly promising transferable interatomic potential, which we show here to generalize to new atom types with no alterations to the underlying model design. Benchmarking on COMP6 energy and force calculations, structure minimization tasks, torsion drives, and applications to molecules with unexpected conformational energy minima demonstrates TrIP2's high accuracy and transferability. Direct architectural comparisons demonstrate superior performance against ANI-2x, while holistic model evaluations─including training data and level-of-theory considerations─show comparative performance with state-of-the-art models like AIMNet2 and MACE-OFF23. Notably, TrIP2 achieves state-of-the-art force prediction performance on the COMP6 benchmarks and closely approaches DFT-optimized structures in torsion drives and geometry optimization tasks. Without requiring any architectural modifications, TrIP2 successfully capitalizes on additional training data to deliver enhanced generalizability and precision, establishing itself as a robust and scalable framework capable of accommodating future expansions or applications to new domains with minimal reengineering.

TrIP2:扩展变压器原子间势证明有机化合物的结构可扩展性。
TrIP2是基于扩展的ANI-2x数据集训练的变压器原子间电位(TrIP)的高级版本,包括硫、氟和氯等更多样化的分子构型。它利用了等效的SE(3)-转换器体系结构,结合了物理偏差和连续原子表示。TrIP是作为一种非常有前途的可转移原子间势引入的,我们在这里将其推广到新的原子类型,而不改变底层模型设计。通过对COMP6的能量和力计算、结构最小化任务、扭转驱动以及意想不到的构象能量最小分子的应用进行基准测试,证明了TrIP2的高精度和可转移性。直接的架构比较显示出优于ANI-2x的性能,而整体模型评估──包括训练数据和理论水平考虑──显示出与AIMNet2和MACE-OFF23等最先进模型的性能比较。值得注意的是,TrIP2在COMP6基准测试中实现了最先进的力预测性能,并在扭转驱动和几何优化任务中接近dft优化结构。在不需要任何架构修改的情况下,TrIP2成功地利用了额外的训练数据来提供增强的泛化性和准确性,将自己建立为一个健壮且可扩展的框架,能够适应未来的扩展或应用程序到新的领域,并且需要最少的再工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信