Mechanisms of Temperature Control of Singlet Fission in an Optical Cavity.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-29 Epub Date: 2025-05-15 DOI:10.1021/acs.jpca.5c01112
Haomin Xiao, Kewei Sun, Xiao Wang, Maxim F Gelin, Yang Zhao
{"title":"Mechanisms of Temperature Control of Singlet Fission in an Optical Cavity.","authors":"Haomin Xiao, Kewei Sun, Xiao Wang, Maxim F Gelin, Yang Zhao","doi":"10.1021/acs.jpca.5c01112","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the mechanisms of temperature control in conical-intersection-mediated singlet fission (SF) within optical cavities. Using the multiple Davydov D<sub>2</sub> Ansatz combined with the thermo-field dynamics formalism, we model the quantum dynamics of a rubrene dimer coupled to an optical cavity at finite temperatures. The work explores the influence of temperature, cavity-matter coupling strength, photon frequency, and cavity loss on the triplet-triplet population dynamics. Results reveal that temperature enhances SF efficiency via thermal activation of coupling modes and assists in overcoming potential barriers between singlet and triplet states. It is found that strong photon-matter coupling and high photon frequencies also promote SF under conditions of resonance with excited vibronic states, while cavity losses and increased photon numbers can inhibit the process. Increased average photon numbers suppress SF as the polaritonic conical intersections shift away from the Franck-Condon region, although a photon-assisted SF effect is revealed for specific values of the average photon number at low temperatures. The study provides insights into the temperature control mechanisms of SF in optical cavities, offering potential directions for designing functional optical cavities to enhance SF efficiency, with implications for organic photovoltaics and other energy transfer technologies.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4786-4797"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c01112","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the mechanisms of temperature control in conical-intersection-mediated singlet fission (SF) within optical cavities. Using the multiple Davydov D2 Ansatz combined with the thermo-field dynamics formalism, we model the quantum dynamics of a rubrene dimer coupled to an optical cavity at finite temperatures. The work explores the influence of temperature, cavity-matter coupling strength, photon frequency, and cavity loss on the triplet-triplet population dynamics. Results reveal that temperature enhances SF efficiency via thermal activation of coupling modes and assists in overcoming potential barriers between singlet and triplet states. It is found that strong photon-matter coupling and high photon frequencies also promote SF under conditions of resonance with excited vibronic states, while cavity losses and increased photon numbers can inhibit the process. Increased average photon numbers suppress SF as the polaritonic conical intersections shift away from the Franck-Condon region, although a photon-assisted SF effect is revealed for specific values of the average photon number at low temperatures. The study provides insights into the temperature control mechanisms of SF in optical cavities, offering potential directions for designing functional optical cavities to enhance SF efficiency, with implications for organic photovoltaics and other energy transfer technologies.

光学腔中单线态裂变的温度控制机制。
我们研究了光学腔内锥形交叉介导的单重态裂变(SF)的温度控制机制。利用多重Davydov D2 Ansatz结合热场动力学形式化,我们模拟了在有限温度下rubrene二聚体与光学腔耦合的量子动力学。研究了温度、腔-物质耦合强度、光子频率和腔损耗对三重态-三重态居群动力学的影响。结果表明,温度通过热激活耦合模式提高了SF效率,并有助于克服单重态和三重态之间的势垒。研究发现,在激发态共振条件下,强光子-物质耦合和高光子频率也促进了SF,而腔损失和光子数的增加则抑制了这一过程。虽然在低温条件下平均光子数的特定值显示了光子辅助的顺势效应,但随着极化共轭圆锥形交点远离frank - condon区域,平均光子数的增加抑制了顺势效应。该研究揭示了光腔中SF的温度控制机制,为设计功能性光腔以提高SF效率提供了潜在的方向,对有机光伏和其他能量转移技术具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信