Evans-Polanyi-like Formulations for Rapidly Predicting Key Depolymerization Barriers in Xylopyranoses: Toward the Faster Development of Kinetic Models for Hemicellulose Pyrolysis.
Leandro Ayarde-Henríquez, Jacopo Lupi, Bernardo Ballotta, Stephen Dooley
{"title":"Evans-Polanyi-like Formulations for Rapidly Predicting Key Depolymerization Barriers in Xylopyranoses: Toward the Faster Development of Kinetic Models for Hemicellulose Pyrolysis.","authors":"Leandro Ayarde-Henríquez, Jacopo Lupi, Bernardo Ballotta, Stephen Dooley","doi":"10.1021/acs.jpca.5c00675","DOIUrl":null,"url":null,"abstract":"<p><p>This work elucidates Evans-Polanyi-like (EPL) relations to rapidly estimate the standard activation enthalpy of three ubiquitous reaction classes playing a central role in hemicellulose pyrolysis: ring-opening, ring contraction, and elimination. These models bypass computing the reaction enthalpy by leveraging computationally cheap local and global electron-density-based chemical reactivity descriptors, such as Fukui's functions (<i>f</i>), electron population of C-O bonds (<i>N</i>), and the gross intrinsic strength bond index (Δ<i>g</i><sup>pair</sup>), evaluated for reactants solely. More than 270 reactions observed in twenty-eight functionalized β-d-xylopyranoses, the hemicellulose building block, are used under the 20-80% partition scheme for validating-deriving purposes. By using multilinear regression analysis, four EPL equations are proposed for informing barriers at the M06-2X/6-311++G(d,p), CBS-QB3, G4, and DLPNO-CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(d,p) levels. An adjusted coefficient of determination of 0.80 characterizes these parametric polynomials. Moreover, MAE and RMSE of ≈3.3 and ≈4.1 kcal mol<sup>-1</sup> describe the performance of the best-fitting models at DFT and G4. Conversely, the highest values, MAE = 3.6 and RMSE = 4.7 kcal mol<sup>-1</sup>, are associated with the CBS-QB3 level. The benchmarking of the computed activation enthalpies at 298 K yields simple functions for high-level estimations from low levels of theory with <i>R</i><sup>2</sup> ranging from 0.94 to 0.98. Extrapolating the DPLNO barriers to the complete basis set limit tends to lower them by 0.63 kcal mol<sup>-1</sup>. EPL expressions are tailored to facilitate the development of chemical kinetic models for hemicellulose pyrolysis, as the reactant structure is the only input required.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4767-4785"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work elucidates Evans-Polanyi-like (EPL) relations to rapidly estimate the standard activation enthalpy of three ubiquitous reaction classes playing a central role in hemicellulose pyrolysis: ring-opening, ring contraction, and elimination. These models bypass computing the reaction enthalpy by leveraging computationally cheap local and global electron-density-based chemical reactivity descriptors, such as Fukui's functions (f), electron population of C-O bonds (N), and the gross intrinsic strength bond index (Δgpair), evaluated for reactants solely. More than 270 reactions observed in twenty-eight functionalized β-d-xylopyranoses, the hemicellulose building block, are used under the 20-80% partition scheme for validating-deriving purposes. By using multilinear regression analysis, four EPL equations are proposed for informing barriers at the M06-2X/6-311++G(d,p), CBS-QB3, G4, and DLPNO-CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(d,p) levels. An adjusted coefficient of determination of 0.80 characterizes these parametric polynomials. Moreover, MAE and RMSE of ≈3.3 and ≈4.1 kcal mol-1 describe the performance of the best-fitting models at DFT and G4. Conversely, the highest values, MAE = 3.6 and RMSE = 4.7 kcal mol-1, are associated with the CBS-QB3 level. The benchmarking of the computed activation enthalpies at 298 K yields simple functions for high-level estimations from low levels of theory with R2 ranging from 0.94 to 0.98. Extrapolating the DPLNO barriers to the complete basis set limit tends to lower them by 0.63 kcal mol-1. EPL expressions are tailored to facilitate the development of chemical kinetic models for hemicellulose pyrolysis, as the reactant structure is the only input required.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.