Molecular Polarizability under Vibrational Strong Coupling.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-05-27 Epub Date: 2025-05-14 DOI:10.1021/acs.jctc.5c00461
Thomas Schnappinger, Markus Kowalewski
{"title":"Molecular Polarizability under Vibrational Strong Coupling.","authors":"Thomas Schnappinger, Markus Kowalewski","doi":"10.1021/acs.jctc.5c00461","DOIUrl":null,"url":null,"abstract":"<p><p>Polaritonic chemistry offers the possibility of modifying molecular properties and even influencing chemical reactivity through strong coupling between vibrational transitions and confined light modes in optical cavities. Despite considerable theoretical progress, and due to the complexity of the coupled light-matter system, the fundamental mechanism of how and if collective strong coupling can induce local changes in individual molecules is still unclear. We derive an analytical formulation of static polarizabilities within linear-response theory for molecules under strong coupling using the cavity Born-Oppenheimer Hartree-Fock ansatz. This ab-initio method consistently describes vibrational strong coupling and electron-photon interactions even for ensembles of molecules. For different types of molecular ensembles, we observed local changes in the polarizabilities and dipole moments that are induced by collective strong coupling. Furthermore, we used the polarizabilities to calculate vibro-polaritonic Raman spectra in the harmonic approximation. This allows us to comprehensively compare the effect of vibrational strong coupling on IR and Raman spectra on an equal footing.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"5171-5181"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polaritonic chemistry offers the possibility of modifying molecular properties and even influencing chemical reactivity through strong coupling between vibrational transitions and confined light modes in optical cavities. Despite considerable theoretical progress, and due to the complexity of the coupled light-matter system, the fundamental mechanism of how and if collective strong coupling can induce local changes in individual molecules is still unclear. We derive an analytical formulation of static polarizabilities within linear-response theory for molecules under strong coupling using the cavity Born-Oppenheimer Hartree-Fock ansatz. This ab-initio method consistently describes vibrational strong coupling and electron-photon interactions even for ensembles of molecules. For different types of molecular ensembles, we observed local changes in the polarizabilities and dipole moments that are induced by collective strong coupling. Furthermore, we used the polarizabilities to calculate vibro-polaritonic Raman spectra in the harmonic approximation. This allows us to comprehensively compare the effect of vibrational strong coupling on IR and Raman spectra on an equal footing.

振动强耦合下的分子极化率。
极化化学通过光学腔中振动跃迁和受限光模式之间的强耦合,提供了改变分子性质甚至影响化学反应性的可能性。尽管在理论上取得了长足的进步,但由于耦合光物质系统的复杂性,集体强耦合如何以及是否能诱导单个分子局部变化的基本机制仍不清楚。我们利用Born-Oppenheimer - Hartree-Fock空腔,推导了强耦合下分子的线性响应理论中静态极化率的解析公式。这种从头算方法一致地描述了振动强耦合和电子-光子相互作用,即使对于分子系综也是如此。对于不同类型的分子系综,我们观察到了集体强耦合引起的极化率和偶极矩的局部变化。此外,我们利用极化率计算了谐波近似下的振动极化拉曼光谱。这使我们能够在平等的基础上全面比较振动强耦合对红外和拉曼光谱的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信