Juan Torres-Rodríguez, Ricardo A Pérez-Camargo, Yunxiang Shi, Kaojin Wang, Yong-Guang Jia, X X Zhu, Alejandro J Müller
{"title":"The Hidden Isodimorphic Crystallization of Poly(ε-Caprolactone-<i>Ran</i>-ω-Pentadecalactone) Copolymers.","authors":"Juan Torres-Rodríguez, Ricardo A Pérez-Camargo, Yunxiang Shi, Kaojin Wang, Yong-Guang Jia, X X Zhu, Alejandro J Müller","doi":"10.1021/acs.biomac.5c00075","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ε-caprolactone-<i>ran</i>-ω-pentadecalactone) (PCL<sub><i>x</i></sub>-PPDL<sub><i>y</i></sub>) copolymers were synthesized by using ring-opening polymerization with <i>Candida antarctica</i> lipase B as a catalyst across various compositions. The aim was to study their crystallization behavior and ascertain whether they are isomorphic or isodimorphic. Differential scanning calorimetry, polarized light optical microscopy, <i>in situ</i> wide- and small-angle X-ray scattering, and Fourier-transform infrared spectroscopy were employed to assess the crystallization mode. Various crystallization conditions were used to investigate their influence on the comonomer inclusion/exclusion balance. The copolymers exhibited pseudoeutectic behavior across all compositions, crystallizing in either PPDL-type or PCL-type unit cells and conformations, independent of crystallization conditions. This indicates that they are isodimorphic, contrary to previous reports. Self-nucleation tests showed that the <i>Domain II</i> width decreases with increasing comonomer content, supporting isodimorphism. The pseudoeutectic point was observed at CL contents above 83%, which explains the previously unrecognized isodimorphic character of these copolyesters.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(ε-caprolactone-ran-ω-pentadecalactone) (PCLx-PPDLy) copolymers were synthesized by using ring-opening polymerization with Candida antarctica lipase B as a catalyst across various compositions. The aim was to study their crystallization behavior and ascertain whether they are isomorphic or isodimorphic. Differential scanning calorimetry, polarized light optical microscopy, in situ wide- and small-angle X-ray scattering, and Fourier-transform infrared spectroscopy were employed to assess the crystallization mode. Various crystallization conditions were used to investigate their influence on the comonomer inclusion/exclusion balance. The copolymers exhibited pseudoeutectic behavior across all compositions, crystallizing in either PPDL-type or PCL-type unit cells and conformations, independent of crystallization conditions. This indicates that they are isodimorphic, contrary to previous reports. Self-nucleation tests showed that the Domain II width decreases with increasing comonomer content, supporting isodimorphism. The pseudoeutectic point was observed at CL contents above 83%, which explains the previously unrecognized isodimorphic character of these copolyesters.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.