Oxide semiconductor in a neuromorphic chromaticity communication loop for extreme environment exploration

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shangda Qu, Qianbo Yu, Chengpeng Jiang, Taoyu Zou, Honghuan Xu, Longlong Zhang, Mengze Tao, Qingshan Zhu, Song Zhang, Cong Geng, Mingjian Yuan, Yong-Young Noh, Wentao Xu
{"title":"Oxide semiconductor in a neuromorphic chromaticity communication loop for extreme environment exploration","authors":"Shangda Qu,&nbsp;Qianbo Yu,&nbsp;Chengpeng Jiang,&nbsp;Taoyu Zou,&nbsp;Honghuan Xu,&nbsp;Longlong Zhang,&nbsp;Mengze Tao,&nbsp;Qingshan Zhu,&nbsp;Song Zhang,&nbsp;Cong Geng,&nbsp;Mingjian Yuan,&nbsp;Yong-Young Noh,&nbsp;Wentao Xu","doi":"10.1126/sciadv.adu3576","DOIUrl":null,"url":null,"abstract":"<div >Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (~10<sup>4</sup> seconds) and high-dose (~5 × 10<sup>15</sup> ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3576","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (~104 seconds) and high-dose (~5 × 1015 ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.
用于极端环境探索的神经形态色度通信环路中的氧化物半导体
空间探索,特别是在极端空间环境下的空间探索,越来越受到人们的关注。能够实时感知环境和自主协作的网络化机器人为执行复杂的精密任务提供了一个有希望的替代方案。因此,实现本地可靠通信和制备耐辐照材料至关重要。在这里,我们展示了一个受头足类启发的神经形态回路,它使单个近传感器处理单元之间的色度通信成为可能。制备了一种可编程排列的铝氧化锌纳米纤维阵列,并将其用作导电通道,可以承受长时间(~104秒)和高剂量(~5 × 1015离子/平方厘米)质子照射。神经形态回路具有环境感知、事件驱动处理、自适应学习和色度通信能力,能够基于触觉反馈实现机器人手的自驱动协作,并确保无人机飞行控制的可靠移动链接。这项工作为神经形态可见光通信开辟了方向,标志着仿生智能领域的重要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信