{"title":"Astrocytes-derived LCN2 triggers EV-A71–induced muscle soreness via accumulating lactate","authors":"Qiao You, Jing Wu, Chaoyong Wang, Deyan Chen, Shiji Deng, Yurong Cai, Nan Zhou, Ruining Lyu, Yajie Qian, Yi Xie, Miao He, Zhiwei Wu","doi":"10.1126/sciadv.adt9837","DOIUrl":null,"url":null,"abstract":"<div >Viral muscle soreness (VMS) is a common feature during acute viral infections, including those caused by enteroviruses, and it substantially diminishes patients’ quality of life. At present, we aim to establish the “brain-muscle” axis to explore the underlying mechanisms of VMS. We initially observed that diminished pain threshold occurred in enterovirus A71 (EV-A71)–infected C57BL/6J and AG6 mice. Subsequently, RNA sequencing data showed that lipocalin 2 (LCN2) was up-regulated during multiple viral infections, including EV-A71, Japanese encephalitis virus, vesicular stomatitis virus, and West Nile virus, which all caused VMS. As expected, <i>Lcn2</i>-deficient C57BL/6 J (<i>Lcn2</i><sup>−/−</sup>) mice exhibited greater pain tolerance, as shown by stronger grip force and stable motor function after EV-A71 infection. Mechanistically, EV-A71–induced high-mobility group 1 (HMGB1) stimulated astrocyte-derived LCN2 secreted into the circulatory system, which enhanced glycolysis and induced lactate buildup in muscle through increasing pyruvate dehydrogenase kinase 1 (PDK1) expression and decreasing pyruvate dehydrogenase (PDH) activity. Together, HMGB1/LCN2/PDK1/lactate pathway in the brain-muscle axis promoted VMS development.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9837","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Viral muscle soreness (VMS) is a common feature during acute viral infections, including those caused by enteroviruses, and it substantially diminishes patients’ quality of life. At present, we aim to establish the “brain-muscle” axis to explore the underlying mechanisms of VMS. We initially observed that diminished pain threshold occurred in enterovirus A71 (EV-A71)–infected C57BL/6J and AG6 mice. Subsequently, RNA sequencing data showed that lipocalin 2 (LCN2) was up-regulated during multiple viral infections, including EV-A71, Japanese encephalitis virus, vesicular stomatitis virus, and West Nile virus, which all caused VMS. As expected, Lcn2-deficient C57BL/6 J (Lcn2−/−) mice exhibited greater pain tolerance, as shown by stronger grip force and stable motor function after EV-A71 infection. Mechanistically, EV-A71–induced high-mobility group 1 (HMGB1) stimulated astrocyte-derived LCN2 secreted into the circulatory system, which enhanced glycolysis and induced lactate buildup in muscle through increasing pyruvate dehydrogenase kinase 1 (PDK1) expression and decreasing pyruvate dehydrogenase (PDH) activity. Together, HMGB1/LCN2/PDK1/lactate pathway in the brain-muscle axis promoted VMS development.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.