Celluloepidemiology—A paradigm for quantifying infectious disease dynamics on a population level

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
My K. Ha, Anna Postovskaya, Maria Kuznetsova, Pieter Meysman, Vincent Van Deuren, Sabrina Van Ierssel, Hans De Reu, Jolien Schippers, Karin Peeters, Hajar Besbassi, Leo Heyndrickx, Betty Willems, Joachim Mariën, Esther Bartholomeus, Koen Vercauteren, Philippe Beutels, Pierre Van Damme, Eva Lion, Erika Vlieghe, Kris Laukens, Samuel Coenen, Reinout Naesens, Kevin K. Ariën, Benson Ogunjimi
{"title":"Celluloepidemiology—A paradigm for quantifying infectious disease dynamics on a population level","authors":"My K. Ha,&nbsp;Anna Postovskaya,&nbsp;Maria Kuznetsova,&nbsp;Pieter Meysman,&nbsp;Vincent Van Deuren,&nbsp;Sabrina Van Ierssel,&nbsp;Hans De Reu,&nbsp;Jolien Schippers,&nbsp;Karin Peeters,&nbsp;Hajar Besbassi,&nbsp;Leo Heyndrickx,&nbsp;Betty Willems,&nbsp;Joachim Mariën,&nbsp;Esther Bartholomeus,&nbsp;Koen Vercauteren,&nbsp;Philippe Beutels,&nbsp;Pierre Van Damme,&nbsp;Eva Lion,&nbsp;Erika Vlieghe,&nbsp;Kris Laukens,&nbsp;Samuel Coenen,&nbsp;Reinout Naesens,&nbsp;Kevin K. Ariën,&nbsp;Benson Ogunjimi","doi":"10.1126/sciadv.adt2926","DOIUrl":null,"url":null,"abstract":"<div >To complement serology as a tool in public health interventions, we introduced the “celluloepidemiology” paradigm where we leveraged pathogen-specific T cell responses at a population level to advance our epidemiological understanding of infectious diseases, using SARS-CoV-2 as a model. Applying flow cytometry and machine learning on data from more than 500 individuals, we showed that the number of T cells with positive expression of functional markers not only could distinguish patients who recovered from COVID-19 from controls and pre-COVID donors but also identify previously unrecognized asymptomatic patients from mild, moderate, and severe recovered patients. The celluloepidemiology approach was uniquely capable to differentiate health care worker groups with different SARS-CoV-2 exposures from each other. T cell receptor (TCR) profiling strengthened our analysis by revealing that SARS-CoV-2–specific TCRs were more abundant in patients than in controls. We believe that adding data on T cell reactivity will complement serology and augment the value of infection morbidity modeling for populations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt2926","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt2926","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To complement serology as a tool in public health interventions, we introduced the “celluloepidemiology” paradigm where we leveraged pathogen-specific T cell responses at a population level to advance our epidemiological understanding of infectious diseases, using SARS-CoV-2 as a model. Applying flow cytometry and machine learning on data from more than 500 individuals, we showed that the number of T cells with positive expression of functional markers not only could distinguish patients who recovered from COVID-19 from controls and pre-COVID donors but also identify previously unrecognized asymptomatic patients from mild, moderate, and severe recovered patients. The celluloepidemiology approach was uniquely capable to differentiate health care worker groups with different SARS-CoV-2 exposures from each other. T cell receptor (TCR) profiling strengthened our analysis by revealing that SARS-CoV-2–specific TCRs were more abundant in patients than in controls. We believe that adding data on T cell reactivity will complement serology and augment the value of infection morbidity modeling for populations.
纤维素流行病学-在人口水平上量化传染病动态的范例
为了补充血清学作为公共卫生干预工具的作用,我们引入了“细胞流行病学”范式,利用SARS-CoV-2作为模型,在群体水平上利用病原体特异性T细胞反应来推进我们对传染病的流行病学理解。通过流式细胞术和机器学习对500多人的数据进行分析,我们发现功能标记物表达阳性的T细胞数量不仅可以区分COVID-19康复患者与对照组和前COVID-19供体,还可以区分以前未被识别的无症状患者与轻度、中度和重度康复患者。细胞流行病学方法具有区分不同SARS-CoV-2暴露的卫生保健工作者群体的独特能力。T细胞受体(TCR)分析增强了我们的分析,揭示了患者中sars - cov -2特异性TCR比对照组更丰富。我们相信,增加T细胞反应性数据将补充血清学,并增加人群感染发病率模型的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信