Linlin Tang, Jinghao Wang, Kaiqi Xu, Zhen Li, Jie Song
{"title":"Upgraded circular single-stranded DNA regulators for multiple-input multiple-output gene circuits in mammalian cells","authors":"Linlin Tang, Jinghao Wang, Kaiqi Xu, Zhen Li, Jie Song","doi":"10.1126/sciadv.adv3396","DOIUrl":null,"url":null,"abstract":"<div >Synthetic gene networks hold promise for genetic diagnostics and gene therapy but face limitations due to insufficient molecular tools. Gene-encoded circular single-stranded DNA (Css DNA) has been developed as a switchable vector to enrich regulatory components beyond protein/RNA-based systems in mammalian cells. However, the previous Css DNA regulator suffered from constrained regulatory sequence flexibility, disability of multiple-input multiple-output (MIMO) signals, and lack of endogenous orthogonal regulation. Here, we address these challenges by engineering a “bridge” design into the Css DNA regulator. These bridges function as sequence-programmable switches to control gene expression, responding to endogenous molecular signals (such as ATP, APE1, and RNase H) and enabling trans-regulation within or between Css DNAs. We exploit the orthogonality of Css DNA regulator to construct the three-input three-output genetic circuits. The upgraded Css DNA–based regulatory strategy represents a versatile and powerful platform for gene regulation and provides a promising avenue for the development of synthetic gene networks.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv3396","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv3396","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic gene networks hold promise for genetic diagnostics and gene therapy but face limitations due to insufficient molecular tools. Gene-encoded circular single-stranded DNA (Css DNA) has been developed as a switchable vector to enrich regulatory components beyond protein/RNA-based systems in mammalian cells. However, the previous Css DNA regulator suffered from constrained regulatory sequence flexibility, disability of multiple-input multiple-output (MIMO) signals, and lack of endogenous orthogonal regulation. Here, we address these challenges by engineering a “bridge” design into the Css DNA regulator. These bridges function as sequence-programmable switches to control gene expression, responding to endogenous molecular signals (such as ATP, APE1, and RNase H) and enabling trans-regulation within or between Css DNAs. We exploit the orthogonality of Css DNA regulator to construct the three-input three-output genetic circuits. The upgraded Css DNA–based regulatory strategy represents a versatile and powerful platform for gene regulation and provides a promising avenue for the development of synthetic gene networks.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.