Rahul Jagadeesan, Suchintak Dash, Cristina S. D. Palma, Ines S. C. Baptista, Vatsala Chauhan, Jarno Mäkelä, Andre S. Ribeiro
{"title":"Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters","authors":"Rahul Jagadeesan, Suchintak Dash, Cristina S. D. Palma, Ines S. C. Baptista, Vatsala Chauhan, Jarno Mäkelä, Andre S. Ribeiro","doi":"10.1126/sciadv.adl3570","DOIUrl":null,"url":null,"abstract":"<div >Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in <i>Escherichia coli</i> have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons’ responses are influenced by stress-related changes in premature elongation terminations and internal promoters’ activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in <i>E. coli</i> under other stresses and in evolutionarily distant bacteria <i>Bacillus subtilis</i>, <i>Corynebacterium glutamicum</i>, and <i>Helicobacter pylori</i>. Our results suggest that the strength, number, and positioning of operons’ internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adl3570","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adl3570","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in Escherichia coli have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons’ responses are influenced by stress-related changes in premature elongation terminations and internal promoters’ activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in E. coli under other stresses and in evolutionarily distant bacteria Bacillus subtilis, Corynebacterium glutamicum, and Helicobacter pylori. Our results suggest that the strength, number, and positioning of operons’ internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.