Rongrong Ding, Carolina Guida, Carolyn I. Pearce, Elke Arenholz, Jean-Marc Grenèche, Alexandre Gloter, Andreas C. Scheinost, Kristina O. Kvashnina, Kaifeng Wang, Alejandro Fernandez-Martinez, Yang Mu, Kevin M. Rosso, Laurent Charlet
{"title":"Single rhenium atoms on nanomagnetite: Probing the recharge process that controls the fate of rhenium in the environment","authors":"Rongrong Ding, Carolina Guida, Carolyn I. Pearce, Elke Arenholz, Jean-Marc Grenèche, Alexandre Gloter, Andreas C. Scheinost, Kristina O. Kvashnina, Kaifeng Wang, Alejandro Fernandez-Martinez, Yang Mu, Kevin M. Rosso, Laurent Charlet","doi":"10.1126/sciadv.adq3650","DOIUrl":null,"url":null,"abstract":"<div >Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq3650","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3650","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.