Single rhenium atoms on nanomagnetite: Probing the recharge process that controls the fate of rhenium in the environment

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rongrong Ding, Carolina Guida, Carolyn I. Pearce, Elke Arenholz, Jean-Marc Grenèche, Alexandre Gloter, Andreas C. Scheinost, Kristina O. Kvashnina, Kaifeng Wang, Alejandro Fernandez-Martinez, Yang Mu, Kevin M. Rosso, Laurent Charlet
{"title":"Single rhenium atoms on nanomagnetite: Probing the recharge process that controls the fate of rhenium in the environment","authors":"Rongrong Ding,&nbsp;Carolina Guida,&nbsp;Carolyn I. Pearce,&nbsp;Elke Arenholz,&nbsp;Jean-Marc Grenèche,&nbsp;Alexandre Gloter,&nbsp;Andreas C. Scheinost,&nbsp;Kristina O. Kvashnina,&nbsp;Kaifeng Wang,&nbsp;Alejandro Fernandez-Martinez,&nbsp;Yang Mu,&nbsp;Kevin M. Rosso,&nbsp;Laurent Charlet","doi":"10.1126/sciadv.adq3650","DOIUrl":null,"url":null,"abstract":"<div >Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq3650","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3650","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the redox transitions that control rhenium geochemistry is central to paleoredox and geochronology studies, as well as predicting the fate of chemically similar hazardous oxyanions in the environment such as pertechnetate. However, detailed mechanistic information regarding rhenium redox transitions in anoxic systems is scarce. Here, we performed a comprehensive laboratory study of rhenium redox transitions on variably oxidized magnetite nanoparticle surfaces. Through high-end spectroscopic and microscopic tools, we propose an abiotic transition pathway in which aqueous iron(II) ions in the presence of pure or preoxidized magnetite serve as an electron source to reduce rhenium(VII) to individual rhenium(IV) atoms or small polynuclear species on nanoparticle surfaces. Notably, iron(II) ions recharged preoxidized magnetite nanoparticles exhibit a maghemite core and a magnetite shell, challenging the traditional core-shell magnetite-maghemite model. This study provides a fundamental understanding of redox processes governing rhenium fate and transport in the environment and enables an improved basis for predicting its speciation in geochemical systems.
纳米磁铁矿上的单个铼原子:探索控制环境中铼命运的充电过程
了解控制铼地球化学的氧化还原转变是古氧化还原和地质年代学研究的核心,也是预测环境中化学性质相似的危险氧离子(如高锝酸盐)命运的核心。然而,关于缺氧系统中铼氧化还原转变的详细机制信息很少。在这里,我们进行了一个全面的实验室研究铼氧化还原跃迁在不同氧化的磁铁矿纳米颗粒表面。通过高端光谱和显微镜工具,我们提出了一种非生物过渡途径,其中水铁(II)离子在纯磁铁矿或预氧化磁铁矿的存在下作为电子源将铼(VII)还原为单个铼(IV)原子或纳米颗粒表面的小多核物质。值得注意的是,铁(II)离子充电的预氧化磁铁矿纳米颗粒呈现磁铁矿核和磁铁矿壳,挑战了传统的核-壳磁铁矿-磁铁矿模型。该研究为铼在环境中的命运和运输的氧化还原过程提供了基本的认识,并为地球化学系统中铼的物种形成预测提供了改进的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信