Enhanced Photocatalytic Alkylation using Mg(SPh)2: The Role of Lewis Acidity in Catalyst Activity

IF 1.5 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yasuhiro Yamashita, Tomoya Hisada, Yuki Sato, Shū Kobayashi
{"title":"Enhanced Photocatalytic Alkylation using Mg(SPh)2: The Role of Lewis Acidity in Catalyst Activity","authors":"Yasuhiro Yamashita,&nbsp;Tomoya Hisada,&nbsp;Yuki Sato,&nbsp;Shū Kobayashi","doi":"10.1002/hlca.202400207","DOIUrl":null,"url":null,"abstract":"<p>The role of Mg(SPh)<sub>2</sub> on photocatalytic alkylation of an active methylene with a nonactivated alkene was investigated. Kinetic studies indicate that one-electron oxidation of a Mg enolate is the rate-determining step. ESR experiments suggest an interaction between Lewis acidic metals and a radical anion species of 4CzIPN. These results suggest that the higher Lewis acidity of Mg(SPh)<sub>2</sub> stabilizes the 4CzIPN radical anion species to enhance its relative abundance and might influence both the one-electron oxidation step and the radical addition step in the catalytic cycle, leading to enhanced reaction efficiency.</p>","PeriodicalId":12842,"journal":{"name":"Helvetica Chimica Acta","volume":"108 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202400207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helvetica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202400207","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of Mg(SPh)2 on photocatalytic alkylation of an active methylene with a nonactivated alkene was investigated. Kinetic studies indicate that one-electron oxidation of a Mg enolate is the rate-determining step. ESR experiments suggest an interaction between Lewis acidic metals and a radical anion species of 4CzIPN. These results suggest that the higher Lewis acidity of Mg(SPh)2 stabilizes the 4CzIPN radical anion species to enhance its relative abundance and might influence both the one-electron oxidation step and the radical addition step in the catalytic cycle, leading to enhanced reaction efficiency.

Mg(SPh)2增强光催化烷基化反应:刘易斯酸对催化剂活性的影响
研究了Mg(SPh)2在活性亚甲基与非活性烯烃光催化烷基化反应中的作用。动力学研究表明,单电子氧化是决定反应速率的步骤。ESR实验表明Lewis酸性金属与4CzIPN的阴离子自由基之间存在相互作用。这些结果表明,较高的Mg(SPh)2的Lewis酸度稳定了4CzIPN自由基阴离子,提高了其相对丰度,并可能影响催化循环中的单电子氧化步骤和自由基加成步骤,从而提高了反应效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Helvetica Chimica Acta
Helvetica Chimica Acta 化学-化学综合
CiteScore
3.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Helvetica Chimica Acta, founded by the Swiss Chemical Society in 1917, is a monthly multidisciplinary journal dedicated to the dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences, where molecular aspects are key to the findings. Helvetica Chimica Acta is committed to the publication of original, high quality papers at the frontier of scientific research. All contributions will be peer reviewed with the highest possible standards and published within 3 months of receipt, with no restriction on the length of the papers and in full color.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信