Mid-infrared group IV nanowire laser

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Youngmin Kim, Simone Assali, Junyu Ge, Sebastian Koelling, Manlin Luo, Lu Luo, Hyo-Jun Joo, James Tan, Xuncheng Shi, Zoran Ikonic, Hong Li, Oussama Moutanabbir, Donguk Nam
{"title":"Mid-infrared group IV nanowire laser","authors":"Youngmin Kim,&nbsp;Simone Assali,&nbsp;Junyu Ge,&nbsp;Sebastian Koelling,&nbsp;Manlin Luo,&nbsp;Lu Luo,&nbsp;Hyo-Jun Joo,&nbsp;James Tan,&nbsp;Xuncheng Shi,&nbsp;Zoran Ikonic,&nbsp;Hong Li,&nbsp;Oussama Moutanabbir,&nbsp;Donguk Nam","doi":"10.1126/sciadv.adt6723","DOIUrl":null,"url":null,"abstract":"<div >Semiconductor nanowires have shown great potential for enabling ultracompact lasers for integrated photonics platforms. Despite the impressive progress in developing nanowire lasers, their integration into Si photonics platforms remains challenging largely because of the use of III-V and II-VI semiconductors as gain media. Recently, group IV nanowires, particularly direct bandgap GeSn nanowires capable of emitting above 2 μm, have emerged as promising cost-effective gain media for Si-compatible nanowire lasers, but there has been no successful demonstration of lasing from this seemingly promising nanowire platform. Herein, we report the experimental observation of lasing above 2 μm from a single bottom-up grown GeSn nanowire. By harnessing strain engineering and optimized cavity designs simultaneously, the single GeSn nanowire achieves an amplified material gain that can sufficiently overcome minimized optical losses, resulting in single-mode lasing with an ultralow threshold of ~5.3 kilowatts per square centimeter. Our finding paves the way for all–group IV mid-infrared photonic-integrated circuits with Si-compatible lasers for on-chip classical and quantum applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt6723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt6723","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconductor nanowires have shown great potential for enabling ultracompact lasers for integrated photonics platforms. Despite the impressive progress in developing nanowire lasers, their integration into Si photonics platforms remains challenging largely because of the use of III-V and II-VI semiconductors as gain media. Recently, group IV nanowires, particularly direct bandgap GeSn nanowires capable of emitting above 2 μm, have emerged as promising cost-effective gain media for Si-compatible nanowire lasers, but there has been no successful demonstration of lasing from this seemingly promising nanowire platform. Herein, we report the experimental observation of lasing above 2 μm from a single bottom-up grown GeSn nanowire. By harnessing strain engineering and optimized cavity designs simultaneously, the single GeSn nanowire achieves an amplified material gain that can sufficiently overcome minimized optical losses, resulting in single-mode lasing with an ultralow threshold of ~5.3 kilowatts per square centimeter. Our finding paves the way for all–group IV mid-infrared photonic-integrated circuits with Si-compatible lasers for on-chip classical and quantum applications.
中红外四族纳米线激光器
半导体纳米线在集成光子平台上实现超紧凑激光器方面显示出巨大的潜力。尽管在开发纳米线激光器方面取得了令人印象深刻的进展,但由于使用III-V和II-VI半导体作为增益介质,将其集成到硅光子平台仍然具有挑战性。最近,IV组纳米线,特别是能够发射2 μm以上的直接带隙GeSn纳米线,已经成为硅兼容纳米线激光器的有前途的经济有效的增益介质,但尚未成功演示从这种看似有前途的纳米线平台进行激光。本文报道了一根自下而上生长的GeSn纳米线在2 μm以上产生激光的实验观察。通过同时利用应变工程和优化的腔体设计,单个GeSn纳米线实现了放大的材料增益,可以充分克服最小的光学损耗,从而产生具有~5.3千瓦/平方厘米的超低阈值的单模激光。我们的发现为具有硅兼容激光器的全IV族中红外光子集成电路的片上经典和量子应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信