Pedro O. Corda, Joana Vieira Silva, Catarina R. Almeida, Philippe Pierre, Margarida Fardilha
{"title":"De Novo Protein Synthesis Occurs Through the Cytoplasmic Translation Machinery in Mammalian Spermatozoa","authors":"Pedro O. Corda, Joana Vieira Silva, Catarina R. Almeida, Philippe Pierre, Margarida Fardilha","doi":"10.1002/jcp.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The current hypothesis suggests that translation occurs in capacitated spermatozoa through mitochondrial ribosomes. Mitochondrial translation has several particularities, which rise some questions about how mitochondrial ribosomes can ensure sperm translation activity. Here, we aimed to elucidate if cytoplasmic translation occurs in mammalian spermatozoa. A bioinformatic workflow was performed to identify translation-related proteins in human spermatozoa and their association with cytoplasmic translation. The surface sensing of translation (SUnSET) method was used to measure translation activity in capacitated human and bovine spermatozoa. Two translation inhibitors, cycloheximide (CHX, cytoplasmic) and <span>D</span>-chloramphenicol (<span>D</span>-CP, mitochondrial) were used to identify which ribosomes were active in sperm. To spot newly synthesized proteins, puromycin-peptides were immunoprecipitated and analysed by mass spectrometry. A second approach was performed using translation inhibitors and analysing the sperm proteome by mass spectrometry. Bioinformatic analysis revealed that human spermatozoa possess 510 translation proteins, which were enriched for cytoplasmic mRNA translation. CHX decreased translation activity in mammalian sperm, whereas no effect was observed after D-CP treatment. Nine proteins were immunoprecipitated and identified as newly synthesized in capacitated bovine spermatozoa. CHX and <span>D</span>-CP decreased the level of 22 proteins that were replaced, or de novo translated during capacitation. New proteins were associated with relevant processes for sperm physiology. Both translation inhibitors decreased sperm rapid progressive motility and increased sperm immotility. Our results proved sperm translation occurs through cytoplasmic translation machinery in capacitated bovine and human spermatozoa. These results also support that sperm translation is required during capacitation to produce relevant proteins for sperm functions.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The current hypothesis suggests that translation occurs in capacitated spermatozoa through mitochondrial ribosomes. Mitochondrial translation has several particularities, which rise some questions about how mitochondrial ribosomes can ensure sperm translation activity. Here, we aimed to elucidate if cytoplasmic translation occurs in mammalian spermatozoa. A bioinformatic workflow was performed to identify translation-related proteins in human spermatozoa and their association with cytoplasmic translation. The surface sensing of translation (SUnSET) method was used to measure translation activity in capacitated human and bovine spermatozoa. Two translation inhibitors, cycloheximide (CHX, cytoplasmic) and D-chloramphenicol (D-CP, mitochondrial) were used to identify which ribosomes were active in sperm. To spot newly synthesized proteins, puromycin-peptides were immunoprecipitated and analysed by mass spectrometry. A second approach was performed using translation inhibitors and analysing the sperm proteome by mass spectrometry. Bioinformatic analysis revealed that human spermatozoa possess 510 translation proteins, which were enriched for cytoplasmic mRNA translation. CHX decreased translation activity in mammalian sperm, whereas no effect was observed after D-CP treatment. Nine proteins were immunoprecipitated and identified as newly synthesized in capacitated bovine spermatozoa. CHX and D-CP decreased the level of 22 proteins that were replaced, or de novo translated during capacitation. New proteins were associated with relevant processes for sperm physiology. Both translation inhibitors decreased sperm rapid progressive motility and increased sperm immotility. Our results proved sperm translation occurs through cytoplasmic translation machinery in capacitated bovine and human spermatozoa. These results also support that sperm translation is required during capacitation to produce relevant proteins for sperm functions.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.