Different Estimation Methods for the Unit Xgamma Distribution Using Ranked Set Sampling

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Diaa S. Metwally, Amal S. Hassan, Ehab M. Almetwally, Laxmi Prasad Sapkota, Ahmed M. Gemeay, Mohammed Elgarhy
{"title":"Different Estimation Methods for the Unit Xgamma Distribution Using Ranked Set Sampling","authors":"Diaa S. Metwally,&nbsp;Amal S. Hassan,&nbsp;Ehab M. Almetwally,&nbsp;Laxmi Prasad Sapkota,&nbsp;Ahmed M. Gemeay,&nbsp;Mohammed Elgarhy","doi":"10.1002/eng2.70157","DOIUrl":null,"url":null,"abstract":"<p>Ranked set sampling (RSS) is an efficient sampling method when ranking observations is easier than precise measurement. Unlike simple random sampling (SRS), RSS can reduce costs. The unit Xgamma distribution (UXGD), defined over the interval (0,1), effectively captures the characteristics of negatively skewed datasets. This study aims to comprehensively compare several estimation methods, including maximum likelihood, Anderson-Darling, Kolmogorov, ordinary least squares, Anderson-Darling left tail second order, Cramer-von-Mises, left tail Anderson-Darling, weighted least squares, maximum product spacing, right tail Anderson-Darling, and five types of minimum spacing distance for the UXGD parameter under both RSS and SRS techniques. Through extensive simulations, we evaluate the performance of these estimators using multiple criteria under both designs. We rank the estimators based on their performance under both sampling schemes. Simulation findings indicate that the maximum product spacing and maximum likelihood estimation methods are superior to alternative approaches for assessing the estimated quality of RSS and SRS, respectively. It is interesting to note that for both SRS and RSS datasets, the estimates revealed by our model satisfy the consistency property. With an increase in the sample size, the estimates approach the true parameter values. Furthermore, the results highlight the efficiency gains of RSS over SRS, as evidenced by improved accuracy metrics. Two real-world applications, including COVID-19 data from the United Kingdom and France, demonstrate the practical utility of our findings.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70157","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ranked set sampling (RSS) is an efficient sampling method when ranking observations is easier than precise measurement. Unlike simple random sampling (SRS), RSS can reduce costs. The unit Xgamma distribution (UXGD), defined over the interval (0,1), effectively captures the characteristics of negatively skewed datasets. This study aims to comprehensively compare several estimation methods, including maximum likelihood, Anderson-Darling, Kolmogorov, ordinary least squares, Anderson-Darling left tail second order, Cramer-von-Mises, left tail Anderson-Darling, weighted least squares, maximum product spacing, right tail Anderson-Darling, and five types of minimum spacing distance for the UXGD parameter under both RSS and SRS techniques. Through extensive simulations, we evaluate the performance of these estimators using multiple criteria under both designs. We rank the estimators based on their performance under both sampling schemes. Simulation findings indicate that the maximum product spacing and maximum likelihood estimation methods are superior to alternative approaches for assessing the estimated quality of RSS and SRS, respectively. It is interesting to note that for both SRS and RSS datasets, the estimates revealed by our model satisfy the consistency property. With an increase in the sample size, the estimates approach the true parameter values. Furthermore, the results highlight the efficiency gains of RSS over SRS, as evidenced by improved accuracy metrics. Two real-world applications, including COVID-19 data from the United Kingdom and France, demonstrate the practical utility of our findings.

使用排序集抽样的单位Xgamma分布的不同估计方法
当排序观测比精确测量更容易时,排序集抽样(RSS)是一种有效的抽样方法。与简单随机抽样(SRS)不同,RSS可以降低成本。在区间(0,1)上定义的单位Xgamma分布(UXGD)有效地捕获了负倾斜数据集的特征。本研究旨在综合比较RSS和SRS技术下UXGD参数的最大似然、Anderson-Darling、Kolmogorov、普通最小二乘、Anderson-Darling左尾二阶、kramer -von- mises、左尾Anderson-Darling、加权最小二乘、最大积间距、右尾Anderson-Darling以及5种最小间距距离估计方法。通过广泛的模拟,我们在两种设计下使用多个标准评估这些估计器的性能。我们根据它们在两种抽样方案下的性能对估计器进行排名。仿真结果表明,最大产品间距和最大似然估计方法分别优于其他评估RSS和SRS估计质量的方法。有趣的是,对于SRS和RSS数据集,我们的模型显示的估计都满足一致性属性。随着样本量的增加,估计值接近真实参数值。此外,结果强调了RSS比SRS的效率提高,正如精度指标的改进所证明的那样。包括来自英国和法国的COVID-19数据在内的两个实际应用证明了我们的研究结果的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信