Enhancing Surface PM2.5 Air Quality Estimates in GEOS Using CATS Lidar Data

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Alexander V. Matus, Edward P. Nowottnick, John E. Yorks, Arlindo M. da Silva
{"title":"Enhancing Surface PM2.5 Air Quality Estimates in GEOS Using CATS Lidar Data","authors":"Alexander V. Matus,&nbsp;Edward P. Nowottnick,&nbsp;John E. Yorks,&nbsp;Arlindo M. da Silva","doi":"10.1029/2024EA004078","DOIUrl":null,"url":null,"abstract":"<p>Spaceborne lidar offers unique advantages for improving global estimates of fine particulate matter (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math>), traditionally limited by critical data gaps in the vertical dimension. Here, we present a new method to retrieve <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math> relying on ensembles on aerosol extinction available within the GEOS Aerosol Data Assimilation. This study uses 1064-nm backscatter lidar data from the NASA Cloud-Aerosol Transport System (CATS) and model priors from the GEOS model. First, we developed a 1-D ensemble-based variational technique (1-D EnsVar) to perform vertically resolved retrievals of speciated aerosol extinction and surface <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math>. Next, we evaluated the performance of 1-D EnsVar retrievals of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math> and extinction through an independent validation using measurements from spaceborne, airborne, and ground-based platforms. This approach overcomes traditional limitations by leveraging the strengths of complementary vertical aerosol information from CATS and GEOS to better resolve speciated aerosol optical properties and mass. Assimilating CATS lidar data with the GEOS model reduced bias in surface <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math> prediction by 1.1 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>g</mi>\n <mo>/</mo>\n <msup>\n <mi>m</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation> ${\\upmu }\\mathrm{g}/{\\mathrm{m}}^{3}$</annotation>\n </semantics></math> over the CONUS in 2016, potentially reducing model errors by up to 20%. Given the unique capability of CATS to process vertical profile data in near real-time, this work demonstrates the powerful utility of spaceborne lidar for improving air quality forecasting. While this pilot study is not yet performed within a cycling data assimilation system, the developed algorithm can easily be integrated in such systems. These results have broader implications for validating aerosol transport models, refining passive satellite retrievals of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>PM</mtext>\n <mn>2.5</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{PM}}_{2.5}$</annotation>\n </semantics></math>, and developing data assimilation techniques for future lidar platforms.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004078","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spaceborne lidar offers unique advantages for improving global estimates of fine particulate matter ( PM 2.5 ${\text{PM}}_{2.5}$ ), traditionally limited by critical data gaps in the vertical dimension. Here, we present a new method to retrieve PM 2.5 ${\text{PM}}_{2.5}$ relying on ensembles on aerosol extinction available within the GEOS Aerosol Data Assimilation. This study uses 1064-nm backscatter lidar data from the NASA Cloud-Aerosol Transport System (CATS) and model priors from the GEOS model. First, we developed a 1-D ensemble-based variational technique (1-D EnsVar) to perform vertically resolved retrievals of speciated aerosol extinction and surface PM 2.5 ${\text{PM}}_{2.5}$ . Next, we evaluated the performance of 1-D EnsVar retrievals of PM 2.5 ${\text{PM}}_{2.5}$ and extinction through an independent validation using measurements from spaceborne, airborne, and ground-based platforms. This approach overcomes traditional limitations by leveraging the strengths of complementary vertical aerosol information from CATS and GEOS to better resolve speciated aerosol optical properties and mass. Assimilating CATS lidar data with the GEOS model reduced bias in surface PM 2.5 ${\text{PM}}_{2.5}$ prediction by 1.1 μ g / m 3 ${\upmu }\mathrm{g}/{\mathrm{m}}^{3}$ over the CONUS in 2016, potentially reducing model errors by up to 20%. Given the unique capability of CATS to process vertical profile data in near real-time, this work demonstrates the powerful utility of spaceborne lidar for improving air quality forecasting. While this pilot study is not yet performed within a cycling data assimilation system, the developed algorithm can easily be integrated in such systems. These results have broader implications for validating aerosol transport models, refining passive satellite retrievals of PM 2.5 ${\text{PM}}_{2.5}$ , and developing data assimilation techniques for future lidar platforms.

利用CATS激光雷达数据增强地球观测系统中地表PM2.5空气质量估算
星载激光雷达为改善全球细颗粒物估算(PM 2.5 ${\text{PM}}_{2.5}$)提供了独特的优势,传统上受垂直维度关键数据差距的限制。本文提出了一种基于GEOS气溶胶数据同化中气溶胶消光集的PM 2.5 ${\text{PM}}_{2.5}$检索PM 2.5 $的新方法。本研究使用来自NASA云气溶胶传输系统(CATS)的1064纳米后向散射激光雷达数据和来自GEOS模型的模型先验。首先,我们开发了一种基于1-D集合的变分技术(1-D EnsVar),用于垂直分辨检索特定气溶胶消光和地表PM 2.5 ${\text{PM}}_{2.5}$。接下来,我们通过使用星载、机载和地面平台的测量数据进行独立验证,评估了1-D EnsVar对PM 2.5 ${\text{PM}}_{2.5}$和消光的检索性能。该方法利用来自CATS和GEOS的互补垂直气溶胶信息的优势,克服了传统的局限性,更好地解决了特定气溶胶的光学特性和质量。将CATS激光雷达数据与GEOS模型同化后,地表PM 2.5 ${\text{PM}}_{2.5}$预测偏差降低1.1 μ g / m3${\upmu}\mathrm{g}/{\mathrm{m}}^{3}$在2016年的CONUS上,有可能将模型误差减少高达20%。鉴于CATS近乎实时地处理垂直剖面数据的独特能力,这项工作证明了星载激光雷达在改善空气质量预报方面的强大效用。虽然该试点研究尚未在循环数据同化系统中进行,但开发的算法可以很容易地集成到此类系统中。这些结果对于验证气溶胶传输模式、改进无源卫星PM 2.5 ${\text{PM}}_{2.5}$以及为未来的激光雷达平台开发数据同化技术具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信