Machine Learning-Based Prediction of Bond Dissociation Energies for Metal-Trifluoromethyl Compounds†

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yingbo Shao, Haisong Xu, Feiying You, Yao Li, Qi Yang, Xiao-Song Xue
{"title":"Machine Learning-Based Prediction of Bond Dissociation Energies for Metal-Trifluoromethyl Compounds†","authors":"Yingbo Shao,&nbsp;Haisong Xu,&nbsp;Feiying You,&nbsp;Yao Li,&nbsp;Qi Yang,&nbsp;Xiao-Song Xue","doi":"10.1002/cjoc.202500083","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study explores the application of machine learning to predict the bond dissociation energies (BDEs) of metal-trifluoromethyl compounds. We constructed a dataset comprising 2219 metal-trifluoromethyl BDEs using density functional theory (DFT). Through a comparative analysis of various machine learning algorithms and molecular fingerprints, we determined that the XGBoost algorithm, when combined with MACCS and Morgan fingerprints, exhibited superior performance. To further enhance predictive accuracy, we integrated chemical descriptors alongside multiple fingerprints, achieving an <i>R</i><sup>2</sup> value of 0.951 on the test set. The model demonstrated excellent generalization capabilities when applied to synthesized metal-trifluoromethyl compounds, highlighting the critical role of chemical descriptors in improving predictive performance. This research not only establishes a robust predictive model for metal-trifluoromethyl BDEs but also underscores the value of incorporating chemical insights into machine learning workflows to enhance the prediction of chemical properties.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"43 12","pages":"1363-1372"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202500083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of machine learning to predict the bond dissociation energies (BDEs) of metal-trifluoromethyl compounds. We constructed a dataset comprising 2219 metal-trifluoromethyl BDEs using density functional theory (DFT). Through a comparative analysis of various machine learning algorithms and molecular fingerprints, we determined that the XGBoost algorithm, when combined with MACCS and Morgan fingerprints, exhibited superior performance. To further enhance predictive accuracy, we integrated chemical descriptors alongside multiple fingerprints, achieving an R2 value of 0.951 on the test set. The model demonstrated excellent generalization capabilities when applied to synthesized metal-trifluoromethyl compounds, highlighting the critical role of chemical descriptors in improving predictive performance. This research not only establishes a robust predictive model for metal-trifluoromethyl BDEs but also underscores the value of incorporating chemical insights into machine learning workflows to enhance the prediction of chemical properties.

基于机器学习的金属-三氟甲基化合物键解离能预测
本研究探索了机器学习在预测金属-三氟甲基化合物的键解离能(BDEs)中的应用。我们使用密度泛函理论(DFT)构建了包含2219个金属三氟甲基BDEs的数据集。通过对各种机器学习算法和分子指纹的对比分析,我们确定XGBoost算法在与MACCS和Morgan指纹结合时表现出优越的性能。为了进一步提高预测精度,我们将化学描述符与多个指纹结合在一起,在测试集中获得了0.951的R2值。该模型在应用于合成金属-三氟甲基化合物时显示出出色的泛化能力,突出了化学描述符在提高预测性能方面的关键作用。本研究不仅建立了金属-三氟甲基BDEs的稳健预测模型,而且强调了将化学见解纳入机器学习工作流程以增强化学性质预测的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信