Enhanced Automatic Generation Control in Multiarea Power Systems: Crow Search Optimized Cascade FOPI-TIDDN Controller With Integrated Renewable Solar Thermal Models and HVDC Lines

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Naladi Ram Babu, Pamarthi Sunitha, Ganesh Pardhu B. S. S., Sanjeev Kumar Bhagat, Adireddy Ramesh, Arindita Saha, Wulfran Fendzi Mbasso, Pradeep Jangir, Ahmed Hossam-Eldin
{"title":"Enhanced Automatic Generation Control in Multiarea Power Systems: Crow Search Optimized Cascade FOPI-TIDDN Controller With Integrated Renewable Solar Thermal Models and HVDC Lines","authors":"Naladi Ram Babu,&nbsp;Pamarthi Sunitha,&nbsp;Ganesh Pardhu B. S. S.,&nbsp;Sanjeev Kumar Bhagat,&nbsp;Adireddy Ramesh,&nbsp;Arindita Saha,&nbsp;Wulfran Fendzi Mbasso,&nbsp;Pradeep Jangir,&nbsp;Ahmed Hossam-Eldin","doi":"10.1002/eng2.70185","DOIUrl":null,"url":null,"abstract":"<p>As renewable energy sources (RES) are increasingly unified into multiarea power systems, automatic generation control (AGC) faces challenges such as frequency instability, longer settling times, and higher overshoot. While existing optimization techniques like Firefly (FF) and gray wolf (GW) suffer from slow convergence and local optima trapping, conventional controllers like FOPI, PIDN, TIDN, and TIDDN struggle to maintain stability under fluctuating load conditions. Fractional-Order Proportional-Integral with Tilt Integral Double Derivative and Filter (FOPI-TIDDN), a novel cascade controller optimized using the crow search (CS) algorithm, is proposed in this paper to overcome these issues. Furthermore, a two-area AGC framework incorporates realistic dish-Stirling solar thermal systems (RDSTS) and parabolic trough solar thermal plants (PTSTP), and the effects of these systems are examined under different patterns of solar insolation. Additionally, the study assesses how high voltage direct current (HVDC) tie-lines contribute to increased system stability. According to simulation data, the FOPI-TIDDN controller works noticeably better than others in terms of improved frequency regulation, faster settling time, and less overshoot. Compared to FF and GW approaches, the CS algorithm guarantees faster convergence. An ideal fixed-random solar insolation method and HVDC integration also improve system performance. The suggested method enhances renewable-integrated power systems' resilience, efficiency, and stability.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

As renewable energy sources (RES) are increasingly unified into multiarea power systems, automatic generation control (AGC) faces challenges such as frequency instability, longer settling times, and higher overshoot. While existing optimization techniques like Firefly (FF) and gray wolf (GW) suffer from slow convergence and local optima trapping, conventional controllers like FOPI, PIDN, TIDN, and TIDDN struggle to maintain stability under fluctuating load conditions. Fractional-Order Proportional-Integral with Tilt Integral Double Derivative and Filter (FOPI-TIDDN), a novel cascade controller optimized using the crow search (CS) algorithm, is proposed in this paper to overcome these issues. Furthermore, a two-area AGC framework incorporates realistic dish-Stirling solar thermal systems (RDSTS) and parabolic trough solar thermal plants (PTSTP), and the effects of these systems are examined under different patterns of solar insolation. Additionally, the study assesses how high voltage direct current (HVDC) tie-lines contribute to increased system stability. According to simulation data, the FOPI-TIDDN controller works noticeably better than others in terms of improved frequency regulation, faster settling time, and less overshoot. Compared to FF and GW approaches, the CS algorithm guarantees faster convergence. An ideal fixed-random solar insolation method and HVDC integration also improve system performance. The suggested method enhances renewable-integrated power systems' resilience, efficiency, and stability.

在多区域电力系统中增强自动发电控制:乌鸦搜索优化级联FOPI-TIDDN控制器与集成可再生太阳能热模型和HVDC线路
随着可再生能源(RES)越来越多地统一为多区域电力系统,自动发电控制(AGC)面临着频率不稳定、稳定时间长、超调量大等挑战。虽然现有的优化技术如Firefly (FF)和灰狼(GW)存在缓慢收敛和局部最优捕获的问题,但传统的控制器如FOPI、PIDN、TIDN和TIDDN很难在波动负载条件下保持稳定性。为了克服这些问题,本文提出了一种采用乌鸦搜索(CS)算法优化的分数阶比例积分与倾斜积分双导数和滤波器(FOPI-TIDDN)级联控制器。此外,两区AGC框架结合了实际的碟形斯特林太阳能热系统(RDSTS)和抛物面槽式太阳能热系统(PTSTP),并研究了这些系统在不同太阳日照模式下的影响。此外,该研究还评估了高压直流(HVDC)联络线对提高系统稳定性的贡献。仿真数据表明,FOPI-TIDDN控制器在改善频率调节、更快的稳定时间和更小的超调量方面明显优于其他控制器。与FF和GW方法相比,CS算法保证了更快的收敛速度。理想的固定-随机日照方式和高压直流集成也能提高系统性能。该方法提高了可再生能源集成电力系统的弹性、效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信