Verifiable Cloud-Assisted Multi-Party Private Set Intersection Cardinality

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Gongli Li, Weichen Liu, Lu Li
{"title":"Verifiable Cloud-Assisted Multi-Party Private Set Intersection Cardinality","authors":"Gongli Li,&nbsp;Weichen Liu,&nbsp;Lu Li","doi":"10.1002/cpe.70126","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Private Set Intersection Cardinality (PSI-CA) is a privacy-preserving method designed to compute the size of the intersection between two or more sets without revealing any additional information. In scenarios that require extensive computational resources, outsourcing tasks to cloud servers has emerged as a common solution. Nevertheless, the malicious behavior of cloud servers may lead to incorrect results and pose challenges for clients when verifying correctness. First, for clients with limited computational capabilities, a cloud-assisted multi-party PSI-CA (CMPSI-CA) is introduced, which stores the elements generated by the pseudorandom function generator in a Bloom filter and masks them using the Oblivious Distributed Key PRF (Odk-PRF). Furthermore, to protect against possible malicious behavior of cloud servers, the verifiable cloud-assisted multi-party PSI-CA (VCMPSI-CA) is proposed, leveraging the dual functions with the XOR homomorphic property. When the set size is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mn>18</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {2}^{18} $$</annotation>\n </semantics></math> and there are 32 participants, both protocols can be completed in 23.99 and 58.62 s, respectively.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 12-14","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Private Set Intersection Cardinality (PSI-CA) is a privacy-preserving method designed to compute the size of the intersection between two or more sets without revealing any additional information. In scenarios that require extensive computational resources, outsourcing tasks to cloud servers has emerged as a common solution. Nevertheless, the malicious behavior of cloud servers may lead to incorrect results and pose challenges for clients when verifying correctness. First, for clients with limited computational capabilities, a cloud-assisted multi-party PSI-CA (CMPSI-CA) is introduced, which stores the elements generated by the pseudorandom function generator in a Bloom filter and masks them using the Oblivious Distributed Key PRF (Odk-PRF). Furthermore, to protect against possible malicious behavior of cloud servers, the verifiable cloud-assisted multi-party PSI-CA (VCMPSI-CA) is proposed, leveraging the dual functions with the XOR homomorphic property. When the set size is 2 18 $$ {2}^{18} $$ and there are 32 participants, both protocols can be completed in 23.99 and 58.62 s, respectively.

可验证的云辅助多方私有集交集基数
私有集交集基数(PSI-CA)是一种隐私保护方法,用于计算两个或多个集合之间交集的大小,而不透露任何额外的信息。在需要大量计算资源的场景中,将任务外包给云服务器已成为一种常见的解决方案。然而,云服务器的恶意行为可能会导致错误的结果,给客户端验证正确性带来挑战。首先,对于计算能力有限的客户端,引入了云辅助的多方PSI-CA (CMPSI-CA),它将伪随机函数生成器生成的元素存储在布鲁姆过滤器中,并使用遗忘分布式密钥PRF (Odk-PRF)对它们进行掩码。此外,为了防止云服务器可能的恶意行为,利用具有异或同态特性的双重功能,提出了可验证的云辅助多方PSI-CA (VCMPSI-CA)。当集合大小为2 18 $$ {2}^{18} $$,参与者为32人时,两个协议分别可以在23.99秒和58.62秒内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信