Analysis of Ti-Alloy Nanoparticles in Paraffin Oil for 3D MHD Darcy-Forchheimer Flow Over a Bi-Directional Stretching Surface

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
D. Thenmozhi, M. Eswara Rao, Kalyan Kumar Challa, Muhammad Jawad, Liaqat Hamdard, Walid Abdelfattah
{"title":"Analysis of Ti-Alloy Nanoparticles in Paraffin Oil for 3D MHD Darcy-Forchheimer Flow Over a Bi-Directional Stretching Surface","authors":"D. Thenmozhi,&nbsp;M. Eswara Rao,&nbsp;Kalyan Kumar Challa,&nbsp;Muhammad Jawad,&nbsp;Liaqat Hamdard,&nbsp;Walid Abdelfattah","doi":"10.1002/eng2.70136","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional model of Darcy-Forchheimer flow in a convection system consisting of Ti-alloy nanoparticles (TiO<sub>2</sub>) suspended in paraffin oil is mathematically constructed using fluid mechanics and partial differential equations (PDEs). A novel aspect of this study is the application of similarity transformation techniques to convert complex PDEs into a system of ordinary differential equations (ODEs), which are then solved using the Runge–Kutta 4th order method with the shooting technique. This unique approach provides deeper insights into the effects of magnetohydrodynamics (MHD), porosity, heat source, stretching surface, and radiation on bi-directional velocity and temperature profiles. The results demonstrate that Ti-alloy nanoparticles significantly enhance the thermal conductivity of the base fluid, leading to a 34.7% increase in temperature profiles compared to conventional fluids. The presence of a magnetic field induces a Lorentz force, reducing the bi-directional velocity by 18.5% while increasing fluid temperature by 22.9%. An increase in the porosity parameter results in a 15.3% reduction in velocity due to higher resistance, whereas the temperature profile shows a corresponding rise of 26.1%. Furthermore, an increase in the Forchheimer parameter reduces velocity by 21.6%, while the radiation parameter enhances heat transfer by 29.4%. These findings highlight the superior heat transfer efficiency of Ti-alloy-based nanofluids, making them highly suitable for applications in thermal energy storage, solar energy systems, and industrial cooling technologies.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70136","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional model of Darcy-Forchheimer flow in a convection system consisting of Ti-alloy nanoparticles (TiO2) suspended in paraffin oil is mathematically constructed using fluid mechanics and partial differential equations (PDEs). A novel aspect of this study is the application of similarity transformation techniques to convert complex PDEs into a system of ordinary differential equations (ODEs), which are then solved using the Runge–Kutta 4th order method with the shooting technique. This unique approach provides deeper insights into the effects of magnetohydrodynamics (MHD), porosity, heat source, stretching surface, and radiation on bi-directional velocity and temperature profiles. The results demonstrate that Ti-alloy nanoparticles significantly enhance the thermal conductivity of the base fluid, leading to a 34.7% increase in temperature profiles compared to conventional fluids. The presence of a magnetic field induces a Lorentz force, reducing the bi-directional velocity by 18.5% while increasing fluid temperature by 22.9%. An increase in the porosity parameter results in a 15.3% reduction in velocity due to higher resistance, whereas the temperature profile shows a corresponding rise of 26.1%. Furthermore, an increase in the Forchheimer parameter reduces velocity by 21.6%, while the radiation parameter enhances heat transfer by 29.4%. These findings highlight the superior heat transfer efficiency of Ti-alloy-based nanofluids, making them highly suitable for applications in thermal energy storage, solar energy systems, and industrial cooling technologies.

双向拉伸表面三维MHD Darcy-Forchheimer流动中石蜡油中钛合金纳米颗粒的分析
利用流体力学和偏微分方程,建立了悬浮在石蜡油中的钛合金纳米颗粒(TiO2)对流系统中Darcy-Forchheimer流动的三维数学模型。本研究的一个新颖之处是应用相似变换技术将复杂偏微分方程转化为常微分方程系统,然后使用龙格-库塔四阶方法与射击技术求解。这种独特的方法可以更深入地了解磁流体动力学(MHD)、孔隙度、热源、拉伸表面和辐射对双向速度和温度剖面的影响。结果表明,ti -合金纳米颗粒显著提高了基液的导热性,与常规流体相比,温度曲线提高了34.7%。磁场的存在引起洛伦兹力,使双向速度降低18.5%,同时使流体温度升高22.9%。孔隙度参数的增加导致速度降低15.3%,而温度曲线相应升高26.1%。此外,增加Forchheimer参数可使速度降低21.6%,而增加辐射参数可使换热提高29.4%。这些发现突出了钛合金基纳米流体优越的传热效率,使其非常适合应用于热能储存、太阳能系统和工业冷却技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信